
Mosquitoes are vectors of many disease-causing pathogens, including malaria, 
dengue, chikungunya, and yellow fever. According to the World Health Organization, 
these vector-borne diseases account for several hundred thousand deaths 
annually. They also cause zoonoses, such as Rift Valley fever and West Nile fever.

In this context, the development of operational tools to support surveillance and 
control strategies is essential—not only in countries of the Global South, where 
mosquito-borne diseases are most prevalent in tropical and subtropical regions, 
but also in the countries of the North, where the establishment of invasive species 
such as the tiger mosquito is increasing the risk of disease emergence. To address 
these challenges, Earth observation imagery offers valuable potential: the spatial 
distribution and seasonal dynamics of mosquito populations are closely linked to 
climatic factors (such as temperatures, rainfall and humidity) and environmental 
variables (such as the presence of water bodies and vegetation), many of which can 
be monitored through satellite data.

Numerous recent studies have led to the development of innovative methods that 
combine remote sensing with spatial modelling to predict the spatial and temporal 
dynamics of vector mosquitoes and associated diseases. Moving beyond proof-
of-concept, some of these approaches have given rise to operational tools and 
processing chains that are now actively used by public health authorities and vector 
control agencies.

This book, intended for students, researchers, and public health professionals, 
offers a synthesis of current research and operational tools in the field.
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focuses on the development of methods in remote sensing and spatial modelling with 
applications in the field of health.
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technological and environmental risks, and focuses on developing spatial modelling 
approaches to support crisis management and informed decision-making.
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Foreword

Mosquitoes. The term is generic in nature, yet it is eminently practical for encompassing 
a vast array of biological, ecological, health, social, economic and historical diversity. 
Mosquitoes, or Culicidae to use their scientific name, refers to the 3,700 species described 
here on earth, in addition to an unknown number yet to be described. If nature abhors a 
vacuum, then so do mosquitoes. They are ubiquitous, occurring on every continent and 
across all ecosystems, and have been around for far longer than humans.
This is something which our human readers often forget. You might only think about 
mosquitoes if they're keeping you awake at night, stopping you from enjoying an 
evening outdoors, or, depending on where you live, for causing an illness in the family 
or to one of your livestock or pets.
Emergence. This has become a trendy word in recent years. Humans have become 
aware that diseases can emerge. The French microbiologist Charles Nicolle, in his 
1933 work Destin des maladies infectieuses, already predicted that "there will be new 
[infectious] diseases. It's a fatal fact". Some of these diseases, emerging from the wild 
as a consequence of environmental, climatic, demographic, societal, cultural, health, 
and economic changes, among other factors, are vectorial diseases, and sometimes 
mosquitoes are responsible for this transmission through the  inoculation of viruses 
and parasites.
Mosquitoes are insects, but their study and control go well beyond entomology (from 
entoma, meaning insect in ancient Greek). A multitude of complementary disciplines 
are involved, ranging from taxonomy to public health. Remote sensing and spatial 
modelling are counted among these, and they have become indispensable tools in 
medical and veterinary entomology, as well as agricultural entomology.
By the 5th century BC, the Greek philosopher and physician Hippocrates had already 
established the link between environmental factors and the aetiology of disease. 
He described fevers with the same set of symptoms as malaria, and noted a connec-
tion between the wetlands and these fevers in his treatise On Airs, Waters, and Places. 
Of course, at the time, even though people likely complained about mosquitoes, it 
was not feasible to form a causal relationship with malaria. In the not-so-distant past 
and closer to home, in France the inhabitants of the regions now known as Vendée, 
Sologne, Dombes and Camargue were invaded by mosquitoes, and fevers were 
commonplace in these areas until the beginning of the 20th century. The construction 
site of the Palace of Versailles was the site of numerous fatalities, likely attributable to 
malaria, before the surface water was channelled.
It is only in our recent past, following the formulation of modern germ theory by Louis 
Pasteur, that causal relationships have been established between the environment, 
climate, mosquitoes, microbes and diseases. Over the past two decades, significant 
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progress in our understanding of these relationships have been made, thanks in part 
to novel genomic techniques, but also due to the emergence of sophisticated remote 
sensing technologies, spatial analysis tools for biological phenomena (mosquitoes 
included) and advances in health risk modelling.
The biological diversity of mosquitoes is extraordinary. These 3,700 species are 
particularly well adapted to specific environments and biotopes. Some mosquito 
larvae are only found in very specific larval habitats, such as small, water-filled cavities 
in trees, known as phytotelmata, or the pitchers of carnivorous plants like Nepenthes. 
Others are less picky and are able to thrive in lakes, marshes or on riverbanks; yet 
others are almost exclusively found in areas where water has collected due to human 
activities. Certain species are endemic to a single region (Aedes pia on the island of 
Mayotte), whereas others, which have adapted to urban environments, can be found 
on every continent (Aedes albopictus). Some of these can take blood meals from many 
different animals, including humans (Anopheles arabiensis), whereas others have 
very strict diets (ant regurgitate for Malaya sp.). Some species can survive periods of 
drought or cold by their eggs entering diapause (Aedes), or their adult form resting in 
sheltered sites such as houses and stables. It is, however, essential that they have access 
to water in order to lay their eggs and for the development of larvae and pupae. Water 
plays a vital role in mosquito biology, exerting influence through its presence, quality, 
physical and chemical properties, as well as biotic factors (plants, food, predators). Any 
approach that seeks to ascertain, analyse and correlate water-related parameters (rain-
fall, development, vegetation, etc.) is capable of more accurately estimating, or even 
predicting, the presence or abundance of different mosquito species and  populations, 
as well as the associated risks.
These risks are not trivial. History is replete with examples of fates being decided 
by mosquitoes, from the death of Alexander the Great attributed to malaria 
( Anopheles) or West Nile disease (Culex), and the excavation of the Panama canal 
being halted by malaria and yellow fever (Aedes), to the more recent example of the 
“vertical forest” buildings in China being abandoned by their inhabitants due to 
an invasion by Asian tiger mosquitoes. The list of infectious diseases transmitted 
to humans by different mosquito species is impressive. Nearly 100 human diseases 
can be attributed to mosquitoes. Some are still rare, such as Mayaro fever in South 
America. Yet others are much more common, such as malaria, which kills nearly 
400,000  children every year in Africa, or dengue fever, which affects more than 
300 million people each year and is present on every continent according to the 
World Health  Organization (WHO).
The health, social and economic challenges associated with mosquitoes are therefore 
immense, without considering the ecological challenges. Although mosquitoes play 
an important role in the food chain and contribute to biodiversity, it is nevertheless 
essential to control species that are responsible for major human and animal diseases. 
This control must be rationalised, integrated, adapted, sustainable accepted and 
generate the least environmental impact. The era of the intensive use of insecticides 
is coming to an end. Other more targeted methods, including geographically targeted 
campaigns, are currently being developed. Approaches such as remote sensing, spatial 
analysis and modelling have become indispensable tools for achieving these goals, yet 
they remain underutilised in the decision-making process.
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Foreword

The examples provided in this publication—Anopheles and malaria risk in Camargue, 
French Guiana, Asia and Madagascar; Aedes and dengue risk in Thailand, Brazil and 
the Indian Ocean—show that remote sensing and spatial modelling applied to mosqui-
toes and mosquito-borne diseases play a crucial role in these efforts. They also show 
that interdisciplinary collaboration is required. Models based on inadequate docu-
mentation of biological data are not only devoid of meaning, but they can also foster 
false expectations among those that use them. Conversely, rigorous sampling in the 
field cannot be used to its full potential without good spatial modelling.
Each scientific community has its own concepts and language. Attending a specialist 
symposium can be a real ordeal if one is unable to decipher the code. Set an ento-
mologist loose in a remote sensing convention, or a geomatics expert in the annual 
conference of the Society for Vector Ecology, and they may be unable to correctly 
interpret the words or acronyms being used, such as reflectance, scanning swath, 
exophilic, sternite, univoltine, raster mode, diapause, spectral signature, gonotrophic, 
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water 
Index (NDWI). Only the word vector can be understood by all, but with two very 
different meanings: one taken from the field of biology and the other from the field of 
geomatics. The idea behind this publication, authored by specialists who have worked 
with or even belong to both communities, is to make these concepts accessible to all 
with the help of well-documented and concrete examples. My sincerest thanks and 
best wishes go out to all the contributors. This publication will serve as an invaluable 
reference for those who recognise the need to adopt a global, spatial and environmental 
approach for the study of mosquitoes (and other vectors) and the documentation of 
their biology, distribution, impact and control. It will also prove beneficial to those 
seeking examples of the application of remote sensing and spatial modelling.
This book acts as a bridge between communities, inviting entomologists to more 
abstractions and macroscopic perspectives, and those working in the field of remote 
sensing and geomatics to discover the fascinating world of mosquitoes.

Didier Fontenille  
Medical Entomologist, Research Director 

IRD, UMR MIVEGEC (University of Montpellier, IRD, CNRS)
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General introduction

Thibault Catry, Éric Daudé, Nadine Dessay, Annelise Tran

Remote sensing provides Earth observation data which can be particularly useful for 
modelling and mapping in public health. The World Health Organization (WHO) 
considers the identification, monitoring and control of arthropod vectors to be a 
priority for the surveillance of vector-borne diseases (VBDs). In this regard, over a 
period of more than two decades, a substantial body of research has demonstrated 
that satellite images and other spatially explicit data can assist in identifying the envi-
ronmental and climatic variables that influence the spatio-temporal dynamics of 
VBDs, with a particular focus on mosquito-borne diseases. The current range of satel-
lite sensors allows data to be acquired at high enough spatial and temporal resolutions 
to (i) characterise different environmental and climate variables (land cover, precipita-
tion, temperature, humidity, etc.) associated with the presence of favourable habitats, 
and with vector presence and abundance, (ii) to develop predictive tools and methods 
to model, at different scales, the risks associated with these vectors and the pathogens 
they transmit, and (iii) to help monitor the evolution of this risk. These efforts are 
based on advanced satellite image processing techniques (pixel or object classifica-
tion, use of time series, artificial intelligence algorithms, see Part 1) using multiple 
sensors (optical, radar, lidar, etc.) and multiple resolutions (medium, high, very high 
spatial resolutions), as well as a combination of these remote sensing variables with 
other types of spatial information in different modelling approaches (based on knowl-
edge, data, processes or behaviours, see Part 2). These models can incorporate a large 
number of variables (in particular environmental and climate variables) into complex 
and dynamic systems, thereby enhancing our understanding of the epidemiology 
of mosquito-borne diseases and their transmission mechanisms, which represent a 
major public health concern.
The results of these studies, conducted as part of research programmes, have led to 
the development of operational methods based on remote sensing and modelling, 
which have proliferated in the field of public health in recent years. Some products 
(risk maps, processing chains) have thus been made available by organisations such 
as the land surface data and services hub, Theia1, and in particular by its “Risks asso-
ciated with Infectious Diseases” scientific expertise centre (SEC)2. Such initiatives 

1. www.theia-land.fr/en/
2. www.theia-land.fr/en/ceslist/risks-associated-with-infectious-diseases-sec/

http://www.theia-land.fr/en/
http://www.theia-land.fr/en/ceslist/risks-associated-with-infectious-diseases-sec/
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have allowed research communities, whether from the field of geomatics, entomo-
logy or epidemiology, as well as other stakeholders in public health, to collaborate 
in pursuit of common goal: the enhancement of knowledge and tools to control 
mosquito-borne diseases. In particular, the ANISETTE project3 (Inter-Site Analysis: 
Evaluation of Remote Sensing as a predictive tool for the surveillance and control of 
diseases caused by mosquito), funded by the French national space agency, the Centre 
National d’Etudes Spatiales (CNES), between 2018 and 2022, aimed to assess the inter-
operability of methods combining remote sensing and spatial modelling to predict the 
dynamics of vector mosquitoes and their associated diseases. This project is based 
on the results of various other research projects, both concluded or ongoing, led by 
teams from different joint research units (ASTRE, Espace-Dev, IDEES and TETIS) 
who are engaged in entomological modelling in close collaboration with other organ-
isations, such as institutes of the Pasteur Network, and in particular the Institut 
Pasteur de Madagascar (IPM, Pasteur Institute of Madagascar). The interoperability 
of the methods developed in the framework of these projects was tested across several 
sites in South America (Brazil, Antilles, French Guiana), in Europe (France), in the 
Indian Ocean (Madagascar, Mauritius, Réunion), in South and Southeast Asia (India, 
 Thailand, Cambodia) and in Oceania (New Caledonia).
This publication is the culmination of efforts and reflections undertaken as part of 
the ANISETTE project. It presents a summary of the theoretical concepts, method-
ological approaches, tools and main results achieved by the project team, which is 
primarily composed of geographers, geomatic scientists and modellers. The aim is 
to introduce the concepts of remote sensing and spatial modelling and apply them to 
the study of mosquito-borne diseases. It is intended for laypersons who want a better 
grasp of these notions and their applications to public health4. This work is split into 
two separate parts: Part one covers remote sensing methods for the identification 
and characterisation of environmental and climate determinants of vector mosquito 
populations. Part two focuses on the integration of these variables into different 
modelling approaches in order to implement operational monitoring tools for VBDs 
caused by certain mosquito species. In order to facilitate comprehension, a glos-
sary is provided at the end of the text, defining several technical terms related to the 
different fields under discussion, namely entomology, epidemiology, remote sensing, 
geomatics and mathematics. A list of acronyms and their respective  definitions is also 
provided at the end of this publication.

 �Remote sensing concepts
Remote sensing is defined as the set of techniques used to collect information on 
objects at a distance. In particular, Earth observation uses an instrument (a sensor) 
on board a platform (satellite, aircraft, drone, etc.) to characterise the Earth's surface 
(land surface, oceans or atmosphere). Typical examples of remote sensing include the 
use of satellite imagery or aerial photography.

3. https://anisette.cirad.fr/ 
4. For more detailed information on vector mosquito biology and ecology, readers can refer to the publication 
Le moustique, ennemi public no 1 ?, coordinated by S. Lecollinet, D. Fontenille, N. Pagès and A.-B. Failloux, 
published by Éditions Quæ (2022).

https://anisette.cirad.fr/


13

General introduction

Main characteristics of remote sensors
Different types of remote sensors exist. Passive sensors measure the natural radiation 
emitted or reflected by the surface being observed, as in the case of optical sensors 
which rely on an external energy source (sunlight). As for active sensors, these measure 
the reflected radiation which they themselves emit. This is the case for radar, which 
emits its own energy source and measures surface roughness and humidity.
The signals measured by remote sensors are referred to as “electromagnetic radia-
tion” and possess properties which can be quantified and described. These properties 
include the wavelength (which represents the spatial period of a wave, i.e., the distance 
between two successive maxima), the amplitude (or intensity, which corresponds to 
the maximum value of the oscillation) and polarisation (relationship between the 
amplitude and the direction of travel of the wave). Sensors measure the quantity of 
energy carried by the electromagnetic radiation emitted or reflected by the surfaces. 
In particular, this includes the albedo or directional-hemispherical reflectance, which 
is defined as the ratio between the energy emitted and the energy received. Panchro-
matic images, in black and white, are obtained from recording this radiation in a single 
band of wavelength. “Multispectral” imaging refers to when these measurements are 
taken across different wavelengths. Remote sensors can measure signals in the visible 
spectrum (optical remote sensing), infrared spectrum or microwave spectrum (radar 
remote sensing), thereby providing supplementary data. Sensors can be ground-based, 
on board aircraft or drones (airborne remote sensing), or on satellites. Most Earth 
observation sensors capture information in the form of digital images characterised 
by pixel size and the width of the snapshot (swath width).
Remote sensors are mainly categorised by three resolutions:

 – spatial resolution is the smallest size of observable objects, directly related to the 
elementary size of the image pixel. We refer to low resolution when images have a 
spatial resolution greater than 1 km, medium resolution when this is between 100 m 
and 1 km, high resolution between 10 and 100 m, and very high resolution for values 
ranging from a few dozen centimetres to several metres;

 – temporal resolution, which corresponds to time taken by a satellite to revisit a given 
location, i.e., the time between taking two identical shots;

 – spectral resolution which characterises the ability of the sensor to distinguish 
between signals of different wavelengths. 

Spectral signature concept
Each surface type is characterised by its spectral signature, defined as the variation 
in reflectance as a function of wavelength (Figure I.1). Spectral signature depends on 
the nature of the surface, its physical properties and the interaction it has with the 
incoming electromagnetic waves.

Extracting information from satellite images
There are different ways to make use of the spectral information contained in satel-
lite images. The simplest method consists of a visual interpretation of the image, or 
photointerpretation. More complex analysis methods are used to classify the spec-
tral content of images based on the information contained in pixels (pixel-oriented 
approach), or in objects whereby images are segmented into homogeneous regions 
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of pixels (object-oriented approach). These classification approaches can be unsuper-
vised (without a priori knowledge of the image to be classified) or supervised (when 
prior knowledge is available) [Figure I.2]. Classification algorithms (K-means, Random 
Forest, Support-Vector Machine, etc.) group the information contained in each pixel 
or object into a cluster which describes the image in question.

Figure I.2. General principles of supervised and unsupervised approaches to optical and radar 
satellite image classification.

Satellite image broadcasting
Today, a plethora of platforms exist to provide optical and radar satellite images. 
Such is the case for the Sentinel-1 and 2 sensors of the European Space Agency in the 
 framework of the Copernicus programme5.

5. www.copernicus.eu/en/about-copernicus/infrastructure-overview/discover-our-satellites

Figure I.1. Spectral signatures of natural surfaces across different wavelength bands. Adapted 
from https://e-cours.univ-paris1.fr/.

http://www.copernicus.eu/en/about-copernicus/infrastructure-overview/discover-our-satellites
https://e-cours.univ-paris1.fr/
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A wide range of free software, tools and satellite image processing algorithms are also 
available which help contribute to the popularisation of this technology. The informa-
tion extracted from remote sensing images can then be combined and analysed with 
other spatially explicit data using a Geographic Information System (GIS).

 � Introduction to GIS
GIS are computational tools for the acquisition, storage, updating, integration, anal-
ysis, visualisation and recovery of georeferenced digital data (i.e., data which can be 
associated with a specific location through its geographic coordinates). They allow 
different types and sources of spatially explicit data to be handled and processed.

Georeferenced (or spatially referenced) data is organised in a GIS based on the 
following principle: each type of object (vegetation, water bodies, towns or mosquito 
trapping results) is represented by a different data layer (Figure I.3). Overlaying 
layers according to their spatial references enable each data layer to be visual-
ised and analysed separately (horizontal query within the same layer, e.g., which 
mosquito species were observed and in what abundance?). Additionally, the relation-
ships between different data layers can also be investigated (vertical query between 
different layers, e.g., what type of land cover do we observe in places with the highest 
abundance of mosquitoes?).

Figure I.3.  Principles of data organisation in a GIS—thematic layers and modes of 
representation.

Within a single spatial data layer, objects are of the same kind and represented in two 
different modes:

 – the vector mode or “vector”: in this mode, each object is represented in the form of 
polygons (e.g., a plot of vegetation), lines (e.g., a road or river) or points (e.g., location 
of a trapping site) [Figure I.3]. The most commonly used vector file format is “.shp” 
(shapefile);
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 – the matrix mode or “raster”: in this mode, spatial data is represented in the form of 
an image (or grid) composed of cells of the same size, called pixels (such as in a satellite 
image). The most commonly used raster file format is “.tif ”.
In both cases, geographical data is combined with thematic data, providing informa-
tion on the properties of the object. In vector mode, this thematic data is stored in an 
associated attribute table (e.g., for results of entomological traps, represented in form 
of points, the associated table will list: sample data, captured species, abundance, etc.). 
In raster mode, the pixel value contains the information represented (for a multispec-
tral satellite image, the value of the pixels will be the reflectance value measured by 
the sensor).
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Part 1

Spatial data for vector 
mosquito surveillance  

and associated diseases

The first part of this publication addresses the identification of different environ-
mental, climate and demographic variables that exert an influence on the presence 
and dynamics of mosquito populations, with a particular focus on satellite images and 
their contribution to the study of vector-borne diseases.
The first chapter describes these different variables, in addition to the satellite remote 
sensing data and methodologies that facilitate access to this information. The following 
chapters present different approaches based on satellite imagery for the extraction 
of these variables: the use of spectral indices for water and vegetation (Chapter 2), 
the study of air temperatures (Chapter  3), the characterisation of human popula-
tions (Chapter 4) and finally the use of image texture analysis to characterise urban 
 environments (Chapter 5).
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Chapter 1

Relationships between vector mosquitoes 
and the environment:  

the role of satellite remote sensing methods
Renaud Marti, Claire Teillet, Hobiniaina Anthonio Rakotoarison, 

Florence Fournet

Certain biological traits are shared among the nearly 3,600 species of mosquitoes 
(Diptera: Culicidae) described throughout the world, and these shape a significant 
part of their relationships with the environment and different meteorological factors. 
As ectotherms, the internal temperature of mosquitoes is controlled by the temper-
ature of their environment, which consequently affects their physiology, behaviour, 
ecology and, more broadly, their survival (Reinhold et al., 2018). The life cycle of 
mosquitoes is characterised by four distinct stages (Figure 1.1). The first three have an 
aquatic form: egg, larva (with 4 larval stages called instars each interrupted by a moult) 
and pupa. The final stage is that of the mature adult, which is associated with a period 
of reproduction and dispersal, and is distinguished by an aerial form. The  aquatic 
stages develop in areas of water called larval habitats, the charac teristics of which 
vary depending on the species of mosquito in question. Meteorological factors, such 
as temperature, precipitation or air humidity, are key determinants of the distribu-
tion and dynamics of mosquito populations by influencing the development of each of 
these stages, their transitions and the associated mortality rates.
Only female mosquitoes are haematophagous, and it is during this blood meal that 
they can be infected with a pathogen (virus, bacteria or parasite). Following the 
multiplication of this pathogen, the infected mosquito can then transmit it to a new 
host: the mosquito is then called a “vector”. In addition to exerting an influence on 
mosquito ecology, meteorological variations impact the entire chain of infection and 
development of pathogens, thereby influencing the relationships between human 
populations and vector mosquitoes (Morin et al., 2013; Stresman, 2010). A reduction 
in the development period for mosquitoes, coupled with enhanced survival, results 
in accelerated reproductive cycles and a corresponding increase in the frequency of 
blood meals. An increase in ambient temperature is linked to a more rapid replication 
of the virus in the vector, or an accelerated parasite life cycle, which consequently 
results in a shorter extrinsic incubation period. A modest increase of a few degrees, 
which is compatible with current mosquito biology, has the effect of promoting 
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 pathogen transmission, as evidenced by the aforementioned phenomena. The ongoing 
effects of climate change, however, remain challenging to assess due to their impact 
on a multitude of factors and processes across varying scales. They are accompanied 
by other significant collective changes, such as coevolutionary processes between 
arboviruses and parasites, vector arthropods and their vertebrate hosts. Further-
more, mosquitoes are subjected to local microclimate conditions that may diverge 
significantly from macroclimate measurements, particularly in  heterogeneous urban 
environments (Wimberly et al., 2020).

It is in tropical and subtropical environments that arboviruses and parasites trans-
mitted by mosquitoes cause the greatest harm. However, countries situated in 
temperate latitudes are also affected by certain vector-borne diseases (VBDs). With 
the increase in international travel and trade, combined with the effects of envi-
ronmental and climate change, the potential and proven risks of transmission or 
re-emergence mean that surveillance strategies need to be adapted. Species belonging 
to the three genera of mosquitoes Anopheles, Aedes and Culex are of major interest in 
the study of VBDs. Anopheles is highly prevalent across the globe, with the exception 
of the polar regions, and an accurate understanding of the geographical distribution of 
malaria transmission can only be achieved through a clear delineation between vector 
and non-vector anopheline species (Duvallet et al., 2017). This distinction can some-
times be tricky due to the presence of so called “twin” species in the same ecological 
complex. These are morphologically indistinguishable (impossible to tell apart with 
the naked eye), but possess quite distinct biological, ecological and genetic traits. 
Anopheles gambiae is considered the primary malaria vector worldwide. However, 
it is a species complex, and therefore the use of molecular methods is required to 
distinguish between the various species (Coetzee et al., 2013; Davidson, 1964). Out of 
the 540 species of  Anopheles recorded (Duvallet et al., 2017), around sixty have been 
identified as being malaria vectors, i.e., capable of transmitting parasites of the genus 
Plasmodium (Manguin et al., 2008). Sub-Saharan Africa accounts for 85 to 95 % of 
malaria cases. The principal vector mosquitoes responsible for the transmission of this 
disease in this region are An. gambiae, Anopheles arabiensis and Anopheles coluzzii 
of the species complex An.  gambiae and Anopheles  funestus, of the species group 
An.  funestus (Dahan-Moss et al., 2020). Besides the transmission of parasites from 
the genus Plasmodium, anopheles are also vectors of filaria and o'nyong-nyong virus, 
an arbovirus of interest to public health, notably transmitted by An.  gambiae and 
An. funestus, and described for the first time in Uganda in 1959.

The species Aedes aegypti and Aedes albopictus, belonging to the genus Aedes in the 
historical classification and classified as Stegomyia in the updated taxonomic system6 
proposed by Harbach and Howard (2007), are originally associated with the hot and 
humid climates of tropical regions. These species have been identified as vectors for 
several flaviviruses, which are responsible for a range of diseases including dengue, 
Zika virus disease and yellow fever (tropics of Africa and America), as well as the 
alphavirus that causes chikungunya. Although Ae.  aegypti, which exhibits superior 
vector competence, is the primary vector mosquito of these arboviruses globally, 
Ae. albopictus is an important secondary vector, notably in Asia and islands of the 

6. https://mosquito-taxonomic-inventory.myspecies.info/

https://mosquito-taxonomic-inventory.myspecies.info/
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Indian Ocean. In recent years, the distribution range of this species has expanded to 
encompass regions situated at higher latitudes, including North America and southern 
Europe (Kraemer et al., 2019).
Among the Culex pipiens species assemblage, Cx. pipiens pipiens and Cx. quinque-
fasciatus possess the widest distribution globally and have been observed in all 
urban and suburban temperate and tropical regions. In these areas, they are often 
identified as the primary vectors of arboviruses of interest to animal and public 
health. The  genus Culex is notably associated with the transmission of two flavi-
viruses. One is responsible for Japanese encephalitis, which is observed in Asia 
(with Culex  tritaeniorhynchus as the primary vector). The other is responsible 
for West Nile fever which is present in Europe, Africa, Asia and North and South 
America (with  Culex pipiens in particular as a vector). The genera Aedes (particu-
larly the species Aedes [Aedimorphus] vexans) and Culex (particularly the species 

Relationships between vector mosquitoes and the environment…

Figure 1.1. Life cycle of female mosquitoes illustrated with reference to the different aerial and 
aquatic stages of the species Aedes albopictus. Photographs of the larval stages: © Nicolas Henon—
2022 TIGER (Tri-national Initiative Group of Entomology in Upper Rhine valley).
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Culex poicilipes) can be linked to the transmission of Rift Valley fever, a viral 
zoonotic disease found in Africa and caused by a phlebovirus. Lastly, the three 
genera Anopheles, Aedes and Culex have also been identified as potential vectors 
for the transmission of lymphatic filariasis, a tropical parasitic disease caused by 
 nematodes of the family Filariidae.

 �Relationships between vector mosquitoes  
and the environment
The vector system, which comprises infectious agents, vector mosquitoes and verte-
brate hosts, is part of an environment. Defined by both biotic factors (vegetation 
cover, presence of natural larval habitats, food sources, predators, etc.) and abiotic 
factors (rainfall, temperature, humidity, sunlight, etc.), the environment influences the 
different population densities that make up the vector system as well as the frequency 
of their interactions.

Influence of meteorological factors on life cycle
General considerations
Temperature has a non-linear effect on the different developmental stages of mosqui-
toes, with threshold effects being observed. If the water temperature in the larval 
habitats is too low, development during aquatic stages is slowed or even stopped, 
whereas an increase in temperature up to a threshold value tends to accelerate devel-
opment. An increase in air temperature, provided it remains within an optimal range, 
also promotes survival and activity during the adult stage, including the consumption 
of blood meals.
Each species of mosquito lays its eggs in specific larval habitats, whether natural 
(pools, tree hollows, rock pools, shells, standing water, watercourses, etc.) or arti-
ficial (of various shapes and sizes and containing a variety of matter, crawl spaces, 
etc.), filled with fresh water, brackish water or salt water and containing little or 
a lot of organic matter. In general, the availability of larval habitats is determined 
by precipitation levels (rainfall), which may follow a seasonal cycle depending on 
the latitude and the climate. Depending on the context and human practices, the 
flow of water into these habitats may also come from artificial sources: watering 
of indoor plants, outdoor gardens, irrigation or flooding of agricultural crops 
(e.g., rice fields). Air temperature affects how long the larval habitats contain water 
through the process of evapo transpiration. Lastly, precipitation promotes vegeta-
tion growth, which is both a source of sugar and a resting place for adult mosquitoes 
(Sallam et al., 2017).

Focus on species of medical interest
Mosquitoes of the genus Anopheles lay their eggs one at a time on the water surface. 
For An. gambiae, an optimal temperature for eggs seems to be between 24 and 30 °C, 
with development periods of less than 7 days, whereas lower temperatures (12 °C) and 
higher temperatures (48 °C) considerably reduce egg viability (Impoinvil et al., 2007). 
Anopheles eggs have very poor resistance to desiccation, with a markedly lower hatching 
rate on dry substrates (Duvallet et al., 2017). Conversely, in humid conditions, eggs of 
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An. gambiae and An.  funestus were able to hatch up to 12 and 10 days  respectively 
after being laid. Larval growth of An. gambiae is also enhanced by increasing temper-
ature, with threshold effects and non-linearities being observed: non-linear growth 
from an initial threshold of 16 °C, a linear increase in growth between 22 and 28 °C 
(optimum), non-linear decrease up to a maximum threshold of 34 °C, and detrimental 
effects observed above these temperatures (Bayoh et Lindsay, 2003). Most anopheles 
species must endure unfavourable seasons—cold in temperate regions or drought in 
tropical regions—, which, depending on the species and biogeographical context, can 
lead to different survival strategies in adult females: diapause, quiescence, migration, 
aestivation or gonotrophic dissociation (cessation in egg production but continuing to 
take blood meals) [Duvallet et al., 2017].
Aedes mosquitoes lay their eggs one by one on a substrate near water. During 
prolonged periods of drought, they are remarkably resistant to desiccation (Duvallet 
et al., 2017). Furthermore, prolonged drought may in some contexts lead to more 
water being stored in the form of household containers or tanks, which in turn may 
provide new egg-laying sites (Pontes et al., 2000). Conversely, excessive rainfall over 
a short period of time may result in egg destruction and leaching of larvae, leading 
to excess mortality during aquatic stages (Dieng et al., 2012). The combination of 
temperature and humidity levels strongly determines the reproductive activity and 
survival of Aedes, which are particularly sensitive to low values of these two mutu-
ally influential parameters. At  80% humidity, the females of Ae.  aegypti appear to 
survive longer and produce more eggs at 25 °C than at 35 °C, whereas at 60% humidity, 
oviposition appears to be drastically reduced or even inhibited (Costa et al., 2010). 
In tropical environments, marked by alternating periods of high rainfall and dry 
periods, variations in temperature and humidity, even if small, can lead to seasonal 
increases or decreases in Aedes population density (Nasir et al., 2017). In temperate 
environments, following the development of an adaptive mechanism by certain 
strains, Ae. albopictus females can lay diapause eggs which are resistant to unfavour-
able climate conditions (low temperature), resuming development and hatching once 
more favourable conditions return. Although the eggs of Ae. aegypti have been shown 
to have good cold tolerance in a laboratory setting, and even in the field (Kramer 
et al., 2020), this diapause mechanism has yet to be observed in a natural environ-
ment, which may explain why they have struggled to establish themselves on the 
European continent in the long term. However, recent experimental results obtained 
for certain strains of Ae. aegypti associated with a temperate region (Buenos Aires, 
Argentine) appear to show adult forms which are sensitive to a reduction in photo-
period, resulting in a lower rate of egg hatching (Fischer et al., 2019). If confirmed, 
this ability of Ae. aegypti to pause egg hatching in response to shorter photoperiods 
may facilitate its expansion into regions with colder winters.
Culex pipiens and Cx. quinquefasciatus are present in most inhabited areas of the 
world and are often directly linked to human activities, giving rise to their name of 
the northern and southern house mosquito (Farajollahi et al., 2011). The females lay 
their eggs in batches, forming a raft that floats on the surface of the water in latrines, 
cesspools and drainage systems. The positive correlation between temperature and 
developmental rate in these species appears to be less pronounced above 24 °C, 
with adult mortality rates increasing at higher temperatures (Ciota et al., 2014). The 
worldwide distribution of Cx. pipiens complex mosquitoes can be explained by their 
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adaptation to environments that have been altered or modified by humans, which 
promotes their spread, and by their mixed feeding habits on birds and mammals 
(including humans). High rainfall, crop irrigation and poor maintenance of urban 
sewage systems, as well as elevated temperatures, favour the rapid and prolific growth 
of Culex populations: these mosquitoes thrive in polluted water rich in organic matter 
(Darriet, 2014). In temperate climates, adult females of Cx. p. pipiens overwinter in 
basements and sewage systems (Darriet, 2014).

Interactions between vector mosquitoes and their biotope

General considerations
In favourable environments, mosquitoes make the best use of available resources, 
with a high birth rate, short generation time and good dispersal ability (Duvallet et al., 
2017). Spatial distribution is thus determined by the structure of the environment, 
most importantly the availability of favourable water bodies for gravid females to lay 
eggs and for larvae to develop, and the presence of hosts (animals and humans) for 
blood meals. Due to their remarkable phenotypic plasticity, some mosquito species 
of the genera Anopheles, Aedes and Culex are perfectly adapted to anthropic environ-
ments and exhibit anthropophilic behaviour, which in turn promotes the transmission 
of pathogens (Cohuet et al., 2010). In particular, these species thrive in urban and 
peri-urban environments, taking advantage of human activities to breed, lay eggs and 
find shelter. They target humans either as their primary source of blood meals or more 
opportunistically.

Environment of aquatic stages
Although all three juvenile stages—egg, larva and pupa—are aquatic, the larva is 
the only one that feeds, and most of the effects influencing its development and/or 
mortality rate are related to its population density (Beck-Johnson et al., 2013). There 
are four larval stages (L1 to L4), and this is the only time when mosquitoes contin-
uously increase in size. The period of larval development varies greatly (from a few 
days to several months, or more if the larvae enter diapause) is highly dependent on 
climatic, ecological and environmental conditions. Larval development conditions 
are determined by the quality and quantity of food (yeast, bacteria, micro-plankton, 
micro-algae, pollen grains, etc.), temperature, intra- and interspecific competition, 
and the presence of biotic or abiotic stress factors. Depending on the species in ques-
tion, the availability of larval habitats is a key factor in population dynamics. The pupal 
stage is relatively short (in the order of a few days) and dependant on temperature; 
during this time the pupa does not feed.
Most anopheles species require freshwater larval habitats, although some have a 
high tolerance for salinity. It is worth noting that an adaptation to polluted water has 
been observed in some species in urban environments, such as An.  coluzzii which 
has developed a tolerance to ammonia, one of the main pollutants found in urban 
larval habitats (Duvallet et al., 2017). For Ae. albopictus and Ae. aegypti, all kinds of 
small containers prone to filling with water, both natural and artificial, are potential 
egg-laying sites (Estallo et al., 2008). Mosquitoes of the genus Aedes lay their eggs one 
at a time on moist substrates near water. The larval habitats of Culex are numerous 
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and varied (cesspools, drainage systems, etc.), mainly found in the polluted waters 
and effluents of urban environments, where the larvae can feed on abundant organic 
matter (Darriet, 2014).

Environment of aerial stages and the gonotrophic cycle
The emergence of adult mosquitoes represents a short period of time (ten to fifteen 
minutes) during which they are extremely vulnerable to predation and environ-
mental changes. Some species, termed “eurygamous”, require open spaces for mating 
(e.g., Ae. caspius, Ae. detritus, Cx. pipiens pipiens), while others, stenogamous species, 
can mate in restricted spaces (Ae. albopictus, Cx. pipiens molestus). After mating, the 
nulliparous females (those that have not yet laid eggs) search for a host to take their first 
blood meal, which is necessary to produce eggs in the case of so-called “anauto genous” 
species. During their few weeks of existence (between 3 and 5 weeks for most species 
in tropical regions), female behaviour is dominated by the completion of around a ten 
gonotrophic cycles (gono- relating to sexual reproduction, -trophic meaning having 
nutritional habits or requirements). Each cycle can be broadly broken down into three 
main stages, with a total duration of 3 to 5 days depending on the species and climate 
conditions (Duvallet et al., 2017 ; Figures 1.1 and 1.2):

 – search and selection of vertebrate host by the fasted female;
 – rest for blood digestion and egg maturation;
 – search for an egg-laying site and oviposition by the gravid female.

For Anopheles, blood meals are taken at dusk or during the night, and humans are 
either the primary or an opportunistic target depending on the species. Meals are taken 
either indoors (endophagic) or outdoors (exophagic). For Aedes, blood feeding occurs 
during the day. Ae. aegypti prefers to feed indoors on humans, whereas Ae. albopictus 
generally feeds outdoors and targets the mammals present in the environment. Culex 
bites at night and generally feeds on mammals (including humans), with Cx. pipiens 
pipiens preferring to target birds (bird biting mosquito) in rural (temperate) envi-
ronments and humans in urban environments, with a high degree of endophily 
(distinct preference for human dwellings) for Cx. pipiens molestus (temperate envi-
ronments) and Cx. quinquefasciatus (tropical environments) [Duvallet et al., 2017; 
 Farajollahi et al., 2011].
Except when they emerge, adult mosquitoes of both sexes do not drink water, but they 
regularly feed on the sugar-bearing liquids excreted by plants, including flower nectar. 
Male mosquitoes rely exclusively on these sources of nutrition. Plant preference varies 
depending on the species of mosquito, geographical habitat and seasonal availability. 
When sugar sources are scarce, the females of certain species, such as An. gambiae and 
Ae. aegypti, may compensate for this by taking larger and more frequent blood meals 
(Barredo and Degennaro, 2020). Furthermore, some mosquito species are able to feed 
on sugary solutions and decomposing fruits, which can be found in high  quantities in 
the waste produced by human activities.
In cities, the resources needed to sustain the life cycle of mosquitoes that have adapted 
to artificial habitats are available within a short distance of each other (mating partners, 
egg-laying sites, resting places, and blood meal hosts). At the same time, the active 
dispersal ability of Ae.  aegypti and Ae.  albopictus is considered low, with distances 
generally less than 1 km. Passive dispersal can however occur over great distances, 
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either in the form of desiccation-resistant eggs (transported by boats carrying used 
tyres or some plants such as lucky bamboo for example), or in their adult form being 
transported by road or railway, with the heavy traffic increasing the likelihood of new 
species becoming established (Eritja et al., 2017). The active dispersal distance of 
An. gambiae is considered to be much greater, in the order of 2 to 3 km per genera-
tion (Duvallet et al., 2017). The passive dispersal of this species is usually by means of 
human transport (plane, boat, car, etc.) carrying the adult form.

Figure 1.2. Life cycle of Aedes albopictus mosquitoes in an urban or peri-urban biotope.
In addition to an active dispersal ability, which allows them to complete their development cycle, passive 
dispersal by means of human transport (private vehicles, public transport, etc.) can help them to spread 
over greater distances. 
Female mosquitoes are subject to a higher mortality rate (symbolised by a small red skull) when they move 
(in search of blood meal hosts or egg-laying sites).
The main sources of environmental data from remote sensing platforms are shown at the top of the figure.
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 �Description of the environment using satellite remote 
sensing methods

Benefits of remote sensing
Satellite remote sensing has global coverage and the methods used can be dynamically 
reproduced, in different locations and at different spatial and temporal resolutions. 
They have proven effective in estimating critical environmental variables such as 
certain meteorological parameters (temperature, precipitation, water vapour distri-
bution, wind, etc.) or in providing a first level of description of the biophysical 
environment using spectral indices or more advanced products such as land use or land 
cover (Parselia et al., 2019; see General Introduction and Chapters 2 to 5). The advan-
tage of using these types of techniques in health ecology is that they are constantly 
improving thanks to technological innovation and the availability of new sensors and 
related products (Goetz et al., 2000; Herbreteau et al., 2007). The recent launch of 
the Copernicus programme7 and Sentinel satellites is particularly noteworthy in this 
regard, with the availability of multi-temporal images (weekly revisit rate) and derived 
products with decametric spatial resolution.
Cross-referencing remote sensing data with other socio-economic or land use 
parameters in a geographic information system (GIS) provides a better picture of the 
environment in a given region in terms of mosquito ecology (larval or adult stages), 
for example, by taking into account water management or urban waste (Kolimenakis 
et al., 2021). Products derived from remote sensing data can serve as inputs to various 
modelling methods, allowing the spatial structure of the environment to be incor-
porated into models based on research and observation of statistical relationships 
(Chapter 6), knowledge-based models (Chapter 7), and even models highlighting the 
processes and biological traits of mosquitoes (Chapters 8 and 9).
In the context of human VBDs such as dengue fever, the detection and characterisation 
of urban environments should be a priority (Chapters 4 and 5), given the adaptation 
of certain medically important vectors to urban environments and the global increase 
in the urban population, which overtook the rural population in 2008 (Prasad et al., 
2016). Between 1950 and 2050, the proportion of people living in urban areas will 
increase from 2 in 10 to 7 in 10, with particularly strong urban growth in Asia and 
Africa in the coming decades.

Estimating meteorological variables using remote sensing
Weather stations on the planet's surface can measure temperature, humidity, hours of 
sunshine and wind, all of which can affect the development and spread of mosquitoes 
(see previous section). For sites not covered by these stations, some of these variables 
can be indirectly estimated using satellite remote sensing (Tables 1.1 and 1.2). Unlike 
geostationary satellites (orbiting at a distance of 36,000 km), sun-synchronous satel-
lites (orbiting over the same point on the Earth at the same local mean solar time) 
orbit much closer to the Earth (usually between 500 and 1,000 km), providing spatial 
resolutions that are more suitable for studying ecological phenomena.

7. www.copernicus.eu/

http://www.copernicus.eu/
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Although the sensors on board meteorological satellites allow vertical temperature 
profiles to be constructed, environmental satellites can take direct measurements of 
land surface brightness temperature (Table 1.1). The instruments on board measure the 
emission spectrum in the thermal infrared range (3-14 µm). By using specific algorithms 
(e.g., Split Window), land surface emissivity (LSE) and land surface temperature (LST) 
can be decoupled and estimated as separate variables. The spatial structure of urban 
heat islands can be properly identified and delineated using land surface temperature 
products. These islands can influence mosquito ecology by creating more favourable 
local conditions in urban areas (Huraux et al., 2017). However, when taking a physical 
approach, relating a surface temperature to an air temperature remains difficult and is 
generally modelled using a statistical relationship with in situ observations (Boser et al., 
2021; Weiss et al., 2014; Chapter 3). The spatial resolution of sensors used to estimate 
surface temperatures is currently in the order of a hundred metres at best, or even a 
kilometre, making it impossible to work at finer scales, such as modelling urban neigh-
bourhoods. The planned joint French-Indian satellite mission, TRISHNA (Thermal 
infraRed Imaging Satellite for High-resolution Natural resource Assessment), should 
provide unprecedented spatial resolution (57 m), overcoming some of the current 
operational constraints of thematic mapping (Lagouarde et al., 2018). In some regional 
contexts, the Sentinel-3 SLSTR Level-2 LST, with its 290 km footprint, 1 km spatial 
resolution and daily revisit rate, may also prove useful (Shumilo et al., 2019).

Table 1.1. Primary satellite remote sensing instruments currently in operation associated 
with the “surface temperature” variable.

Satellite platforms 
and associated products

Acquisition characteristics

Image 
footprint

Spatial 
resolution

Revisit 
rate

Examples of use  
in the context of VBDs

ECOSTRESS  
(Ecosystem Spaceborne 
Thermal Radiometer 
Experiment)

384 km 70 m 1 day (Boser et al., 2021)

Landsat 8/9 TIRS  
(Thermal Infrared Sensor) 185 km 100 m 16 days (Ogashawara et al., 2019)

MODIS MOD11A2 
(Moderate Resolution 
Imaging Spectroradiometer)

1100 km 1 km 8 days (Yue et al., 2018)

In terms of precipitation measurement, products derived from the Global Precipita-
tion Measurement (GPM, since 2010) mission provide continuity with the historical 
data collected by the Tropical Rainfall Measuring Mission (TRMM, 1997-2015). 
GSMaP (Global Satellite Mapping of Precipitation) products estimate precipitation 
every 3  days at a resolution of 10 km (Guilloteau et al., 2014), and the Integrated 
Multi-satellite Retrievals for GPM (IMERG) product combines TRMM and GPM data 
to estimate precipitation between 2010 and the present day at a spatial resolution of 
10 km and a temporal resolution ranging from almost real time to every day or month 
(Tsantalidou et al., 2021).
In addition, several national, regional and global databases provide climate data 
(temperature, humidity, precipitation, wind, etc.) in the form of reanalyses generated by 
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climate models incorporating satellite observational data and in situ data.  Bioclimatic 
variables can also be derived from monthly temperature and rainfall data in order 
to generate more biologically meaningful variables (mean diurnal range, isotherms, 
mean annual temperature and precipitation, etc.). With a resolution of nearly 1 km2, 
the “WorldClim” database provides gridded weather and climate datasets for past 
(near-current) and future conditions. Such data has already been used in the context 
of studying the global distribution range of some vector mosquitoes (Kraemer et al., 
2015) and the transmission of certain VBDs (Tsheten et al., 2021).

Table 1.2. Main global precipitation products incorporating satellite remote sensing data.

Meteorological 
products

Acquisition characteristics

Acquisition 
period

Spatial 
resolution

Acquisition 
frequency

Examples of use  
in the context of VBDs

Product 3B43 v6 
Tropical Rainfall 
Measuring Mission 
TRMM

1997 -2015 30 km Monthly 
average

(Scavuzzo et al., 2018) 

GSMaP/MVK v6 
Global Precipitation 
Measurement Mission

2014 -  
present

10 km 3-day 
average

(Guilloteau et al., 2014)

GPM IMERG 
Fusion of TRMM 
(2010-2015) and GPM 
(2014-present)

2010 -  
present

10 km Near-real 
time, daily 

and monthly 
average

(Tsantalidou et al., 2021)

Worldclim 
Climatic  
and bioclimatic  
variables

Past, present, 
future

1 km Monthly 
average 

or variable 
dependent

(Tsheten et al., 2021)

Describing the biophysical environment with remote sensing
Useful optical and radar sensors in the context of VBDs
Depending on their characteristics, remote sensing images can identify objects as 
small as a few centimetres (e.g., drone images) or images of the Earth’s surface taken 
daily (e.g., by the MODIS satellite). In the framework of the Copernicus programme, 
the European Space Agency (ESA) launched the “Sentinel” satellite constellation. 
The Sentinel-1A and Sentinel-1B satellites, which were put into orbit on 3 April 2014 
and 25 April 2016 respectively, operate day and night and provide high-resolution 
(10 m) C-band radar images. Launched on 22 June 2015 and 7 March 2017 respectively, 
Sentinel-2A and Sentinel-2B produce high resolution optical images (primarily 10 and 
20 m) which are particularly useful for monitoring vegetation, aquatic and agricultural 
surfaces, or even urban environments (Table 1.3). Several articles provide a reason-
ably comprehensive list of the sensors used in the study of vector mosquito ecology 
and VBD epidemiology, depending on the surfaces being identified (Catry  et al., 
2018b; Herbreteau et al., 2018). New missions should allow finer levels of detail in 
the description of the environment, with resolutions approaching those of airborne 
remote sensing: 30 cm for Pléiades Neo for example (Soubirane, 2019).
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Table 1.3. Examples of optical and radar satellite remote sensors used in the study of vector 
mosquito ecology and VBD transmission.

Mode  
of acquisition 
and satellite  
platform

Acquisition characteristics

Image 
footprint

Spatial resolution 
(at nadir)

Revisit  
rate

Examples of use  
in the context of VBDs

(Time series) 
Sentinel-1

80 km 10 m 5 days (Hardy et al., 2019)

(Time series) 
Sentinel-2

290 km 10 or 20 m 5 to 10 days (Tran et al., 2019)

(Time series) 
Landsat 7 ETM + 
Landsat 8

185 km 15 m (P) 
30 m (XS)

16 days (Kofidou et al., 2021)

(Time series) 
MODIS

2,230 km 250 m 
500 m

1 day 
7-day delay

(Troyo et al., 2009)

(Programming) 
SPOT 6/7

60 km 1.5 m (P) 
8 m (XS)

Programming 
on request

(Orta-Pineda et al., 2021)

(Programming) 
Pléiades

20 km 0.7 m (P) 
2.8 m (XS)

Programming 
on request

(Georganos et al., 2020)

The letters (P) and (XS) in the “Spatial resolution” column refer respectively to panchromatic and multispec-
tral images (a single wide-spectrum band or specific bands at certain wavelengths, e.g., red, green, blue, 
near-infrared, etc.).

Calculation of spectral indices
In the field of applied remote sensing, the scientific community has developed several 
indices using the combination of different spectral bands to characterise the biophysical 
properties of imaged surfaces (Table 1.4). The Normalized Difference Vegetation Index 
(NDVI) is a measure of chlorophyll content based on the spectral behaviour of vegetation. 
It is calculated by measuring the difference between electromagnetic radiation recorded 
in the near-infrared band (highly reflected by vegetation) and the red band (absorbed). 
NDVI is an index which ranges in value from –1 (no vegetation) to +1 (dense vegetation 
with high chlorophyll content). Additionally, other vegetation indices can be extracted 
from the data, such as EVI (Enhanced Vegetation Index), which estimates structural vari-
ations of the canopy, or SAVI (Soil Adjusted Vegetation Index) which incorporates soil 
brightness. The MNDWI (Modified Normalized Difference Water Index) and NDWI 
(Normalized Difference Water Index) are indices that facilitate the assessment and moni-
toring of surface water content. In contrast, the NDBI (Normalized Difference Built-up 
Index) and BI (Brightness Index) are used to detect the presence of “built-up” surfaces. 
Thresholding can be applied to each index to determine whether a surface contains 
 vegetation (NDVI), water (MNDWI), or is a built-up area (NDBI) [Chapter 2].

Global and regional mapping products available
National space agencies and major scientific centres (such as NASA, ESA, DLR, JRC 
and the Theia data and services centre8) regularly provide products that utilise global or 

8. www.theia-land.fr/en/theia-data-and-services-center/

http://www.theia-land.fr/en/theia-data-and-services-center/
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regional data (Table 1.5). Despite certain inherent limitations of using this data (incon-
sistent quality, sometimes outdated), these products have proven to be  particularly 
useful in instances where in situ observational data is lacking.

Table 1.4. Primary indices derived from remote sensing images to characterise the pres-
ence of vegetation, water and buildings.

Spectral  
indices

Product characteristics

Satellite 
imaging source

Surfaces 
characterised

Calculation 
method(1)

Examples of use  
in the context of VBDs

NDVI 
(Normalized 
Difference 
Vegetation Index)

Multispectral Vegetated 
surfaces

Normalized 
difference 

of NIR  
and Red bands

(Richman et al., 2018)

MNDWI 
(Modified 
Normalized 
Difference 
Water Index)

Multispectral Surface water Normalized 
difference 

between bands: 
Green or NIR 

and SWIR 
or MIR

(Malahlela et al., 2018)

NDBI 
(Normalized 
Difference  
Built-up Index)

Multispectral Built-up areas 
(buildings)

Normalized 
difference 

between SWIR 
and NIR bands

(Demets et al., 2020)

NIR: near-infrared; SWIR: Short Wave Infrared; MIR: mid-infrared.

Table 1.5. Mapping products relevant to the ecology of certain vectors: building footprint, 
topography, land cover.

Product  
name

Product characteristics

Type of 
environment

Acquisition 
platform Methods Associated 

publication

GHSL Building 
footprint

Sentinel-1 
and 2

MASADA 
processing chain

(Pesaresi et al., 2013)

GUF Building 
footprint

TerraSAR-X Texture and 
Support 

Vector Data 
Description

(Esch et al., 2017)

SRTM Topography Space Shuttle 
Endeavour

Radar 
interferometry

(Slater et al., 2006)

OSO 
(Metropolitan 
France)

Land cover Sentinel-2 iota2 processing 
chain

(Inglada et al., 2017)

Ad hoc maps and classifications

In many cases, global or regional land cover products may prove inadequate for repre-
senting the ecology of vectors and the transmission of VBDs. This is due to factors 
such as inappropriate or incomplete definitions of categories, unsuitable spatial reso-
lutions, and the use of obsolete products. If users possess the technical skills, they can 
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create their own mapping products, either with the help of open-source processing 
chains (Table 1.6), or by building their own tools with the help of a toolbox specially 
designed for image processing (such as Orfeo Toolbox9 or SNAP10).

Table 1.6. Examples of open-source processing chains for satellite images which charac-
terise the environmental features relevant to the ecological study of vector mosquitoes and 
VBDs.

Name  
of processing 
chain

Production characteristics

Satellite 
imaging source

Type of 
environment Methods Associated 

publication

Iota2 Sentinel-1  
and 2

Generalist Pixel-oriented 
approach

(Inglada et al., 2017)

Moringa Sentinel-2  
and VHRS 

(e.g., SPOT 6/7, 
Pléiades)

Generalist Object-oriented 
approach

(Dupuy et al., 2020)

Urba-Opt Sentinel-2 Urban Object-oriented 
approach

(Puissant et al., 2019)

Fototex Pléiades,
Sentinel-2

Primarily 
urban, but can 

also be used 
for vegetation

Short-time 
Fourier 

transform 
(texture index)

(Teillet et al., 2021)

WaterDetect Sentinel-2 Surface water Clustering 
algorithm 

Naive Bayes 
classifier

(Cordeiro et al., 2021)

Users convert the biophysical environment to a digital format, compatible with a GIS, 
according to the vector’s ecology and its interaction with the environment (see previous 
sections). This representation is achieved through the extraction of geographical 
objects from the images, or alternatively, through the utilisation of land cover cate-
gories pertaining to biophysical coverage (forest, agricultural land, etc.) and/or land 
use categories indicative of the manner in which the space is being used (e.g., logging 
or rice farming). This classification or “extraction” must be carried out in accordance 
with the available images (resolution, footprint, date), the method employed (object-
based or pixel-based classification, supervised or unsupervised), the selection of an 
appropriate set of parameters, the availability of high-quality training data for super-
vised methods, and an understanding of the vector's ecology (species) within the 
biogeographical context of the study (climate, seasonality, habitats).
A number of large geographical typologies (which should be adapted to the specific 
species and transmission cycle in question) facilitate the structuring and characteri-
sation of landscapes within the broader context of vector mosquito and vector-borne 
disease research:

 – building footprint, which indicates human presence and and has a significant impact 
on the surrounding environment (Troyo et al., 2009). The surface area and height of 

9. www.orfeo-toolbox.org/
10. https://step.esa.int/main/download/snap-download/

http://www.orfeo-toolbox.org/
https://step.esa.int/main/download/snap-download/
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buildings (number of floors) can be used as an indicator of human population density, 
which in turn can be used to determine exposure to mosquito bites (see Chapter 4; 
Georganos et al., 2020);

 – a functional typology associated with building footprints, which may be indicative 
of the habits and behaviours of human populations and influence the risk of transmis-
sion. This includes areas of detached houses with gardens, multi-storey blocks of flats, 
industrial or commercial areas (e.g., markets), or even informal housing and housing 
under construction (Flamand, 2015). The type of human activity associated with a 
given building allows for the identification of the ecological characteristics relevant 
to vector mosquitoes (e.g., the density of larval habitats for oviposition) or the poten-
tial interactions between vector mosquitoes and humans (blood meal availability 
depending on the occupation rate of the location over the course of the day);

 – transportation routes: roads of different sizes, indicative of human mobility, may 
be synonymous with ecological barriers. The suitability of roads and concrete pave-
ments for egg-laying is contingent upon the type of surface, which may be conducive 
to egg-laying in the event of water accumulation and the presence of puddles and 
storm drains (Montalvo et al., 2022); 

 – surface water, which, depending on its size and content (fresh water, salt water or 
brackish water), and the specific larval ecology of the species in question, may be 
considered a potential egg-laying site (e.g., An. gambiae and freshwater pools) or an 
ecological barrier (e.g., watercourses and lakes for Ae. albopictus);

 – forested land and its evolution over time, taking into account the anthropogenic 
pressure exerted in the form of deforestation, urbanisation and the expansion of 
agricultural land, which disturbs balanced ecosystems and promotes human-vector 
contact (Orta-Pineda et al., 2021; Stefani et al., 2013);

 – agricultural areas, which can serve as larval habitats, and notably rice fields which 
have been identified as a crucial breeding ground for anopheles (Diuk‐Wasser et al., 
2006). Additionally, these areas act as mosquito bite exposure zones for individuals 
residing in close proximity. 

 – bare ground, which can play an important role at the start and end of the wet season 
(forming pools of stagnant water). Wetlands are also of particular importance in the 
case of Anopheles (Giardina et al., 2015);

 – vegetation, which plays an important role in urban environments, by maintaining 
a favourable microclimate for vector mosquitoes adapted to urban areas in the form 
of resting places (shaded, cool and wet, or a more temperate environment in winter), 
as well as increasing the presence of potential egg-laying sites or food sources for 
these mosquitoes Depending on the vegetation in question, mosquitoes can feed 
on the sap and nectar of flowers and trees (Honorio et al., 2009). The layout, height 
and type of vegetation, as well as the distance to a vegetated surface, are all impor-
tant explanatory variables for mosquito abundance in urban environments, often 
considered in aggregate form (Manica et al., 2016). A number of categories can thus 
be formed, such as “trees”, “sugar cane”, “stubble field”, “lawn”, or “sparsely vegetated 
land” (Machault et al., 2014);

 – environmental topography, which may be associated with a temperature gradient 
(altitude, exposure), a type of vegetation, or hydrological factors through a derived 
variable (slope) or calculation of a hydrological index (e.g., Topographic Wetness Index 
calculated by Homan et al. [2016] in the context of a malaria study).  Topographical 
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data may be available, at medium spatial resolution, in the form of a global layer (such 
as SRTM, Table 1.5) or generated at high resolution by the user (e.g., digital model of 
terrain derived from radar interferometry, lidar data or a stereopair).
The literature offers a variety of landscape metrics that can be employed in the analysis 
of spectral index maps and for the characterisation of land cover and land use. These 
metrics facilitate the assessment of heterogeneity, fragmentation, composition (such 
as the degree of anthropisation, see Orta-Pineda et al. [2021]) or even the openness 
of a landscape (presence of forest clearings for Anopheles, see Stefani et al. [2013]). 
The interaction between humans and vectors is often considered to be merely a matter 
of distance from specific elements within a given landscape related to vector ecology, 
such as the proximity to a tyre pile, or a graveyard in the case of Ae. albopictus (Estallo 
et al., 2008), or the border of the Amazon rainforest for An. darlingi (Li et al., 2016). 
Alternatively, more complex geospatial statistics have been employed to examine 
human-vector interactions (Giardina et al., 2015). It is also necessary to consider the 
potential role of habitats that are conducive to the survival and development of species 
that can act as intermediate hosts in the zoonotic cycle.
A number of studies on the ecology of vectors implicated in disease transmis-
sion have employed remote sensing data at different scales and dimensions derived 
from the various sensors cited in this chapter (optical and, less commonly, radar) in 
a range of biogeographical contexts (Figure 1.3). The majority of studies on dengue 
(Ae.  albopictus et Ae.  aegypti) and West Nile fever (Cx. pipiens, Cx. tarsalis) are 
primarily concerned with determining the spatial organisation of urban environments 
(Figure 1.3a), while studies on malaria (An. gambiae in particular) also include agro-
forestry environments at the interface of human habitats (Figure 1.3b). The risk maps 
derived from this data frequently diverge from the native pixel resolutions in order 
to aggregate data within administrative regions or other types of delineated areas, 
integrating additional data sources that characterise socio-economic factors and/or 
the practices of populations. In rare cases, satellite data is disaggregated to be cross- 
referenced with more  finely-resolved data (Richman et al., 2018) or is integrated into 
risk models with different resolutions (Demets et al., 2020; Giardina et al., 2015).
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Chapter 2

Spectral indices and classifications 
of multispectral images for vector risk mapping

Annelise Tran, Renaud Marti, Vincent Herbreteau

Traditional methods of analysing remotely sensed multispectral images11 include 
image classification and the calculation of spectral indices. These two approaches 
exploit the pre-existing correlation between the attributes of the surfaces under 
 observation and their respective spectral signatures.
Classification methods enable regions of an image with similar spectral responses to 
be grouped into the same class. Two types of classification methods can be used to 
produce land cover maps from a multispectral image. Supervised classification methods 
employ algorithms (maximum likelihood, Random Forest, etc.) to distinguish between 
the various land cover categories present in the image (water, urban areas, vegetation, 
bare ground, etc.) which are defined in advance by the user ( Rodriguez-Galiano et al., 
2012). It is thus necessary to create a training database for each category to be mapped 
prior to commencing the actual classification process. Unsupervised classification 
methods (e.g., K-means, Isodata) are more automated processes which do not require 
prior knowledge of the categories (Duda and Canty, 2002). Both of these methods 
can be applied to classify each pixel of the image (pixel-oriented approach) or objects 
(object-based approach) by grouping neighbouring pixels with similar reflectance 
values before classification by using an image segmentation process (Blaschke et al., 
2014). In both instances, the collection of validation data on the ground is essential for 
the evaluation of classification quality.
Spectral indices exploit the combination of different bands of a multispectral image 
to highlight certain properties of the surfaces observed (see Chapter 1). For example, 
the spectral signature of vegetation exhibits high reflectance in the near-infrared band 
and, conversely, low reflectance in the red band (Figure I.1). To highlight the areas of 
vegetation in a multispectral image (Figure 2.1a), vegetation indices use the difference 
(such as NDVI, Normalized Difference Vegetation Index, see Chapter 1) or the ratio 
between reflectance values in the near-infrared (NIR) and red (R) bands [Figure 2.1b]:

 
(Equation 1)

11. See general introduction.
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For water bodies, whose spectral signatures exhibit a decrease in reflectance from the 
blue to infrared wavelength ranges, water indices (Figure 2.1c) exploit the differences 
between reflectance values in the green (G) and the near- or mid-infrared (MIR) bands, 
such is the case for the MNDWI (Modified Normalized Difference Water Index):

 
(Equation 2)

The application of a threshold to the spectral indices facilitates the identification and 
mapping of areas of ecological interest for mosquitoes (Figure 2.1d).

Figure 2.1. Examples of vegetation and water index calculations from a multispectral image.
(a) Extract of a Sentinel-2 image, natural colour composite image. (b) Vegetation index. (c) Water index 
– from black, areas with low index values, to white, areas with the highest index values. (d) Result of applying 
image thresholding to a water index – surface water appears in blue.

This chapter presents different examples of the application of traditional multi spectral 
image interpretation methods. The first uses a land cover map derived from a high 
spatial resolution multispectral image to map the local distribution of Anopheles 
mosquitoes in Camargue. In the second example, a water index is calculated from 
medium spatial resolution images and used in a predictive risk model for the occur-
rence of human cases of West Nile fever in Europe at a continental level. Finally, we 
present an illustrative example of an online tool, Sen2Extract, which facilitates the 
straightforward extraction of time series of spectral indices.
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 �Mapping land cover using remotely sensed data in order 
to model the distribution of Anopheles mosquitoes in Camargue
Context
The Camargue is located in the Rhône delta in southern France (Figure 2.2a), with a 
Mediterranean climate characterised by hot and dry summers, mild and wet winters, 
and high rainfall in autumn and spring. The region is sparsely populated and comprises a 
mosaic of wetland landscapes, under the influence of saltwater to the south and with agri-
cultural land to the north. The latter is primarily composed of rice fields and meadows.
The diverse wetland habitats of Camargue provide optimal conditions for the prolifer-
ation of mosquitoes, which are prevalent in significant numbers, and the transmission 
of associated diseases. Malaria was endemic to this region until the beginning of the 
20th century (Jetten, Takken, 1994), and subsequently eliminated in the 1950’s through 
the use of insecticides (essentially DDT) and chemical treatments/quinine-based 
prophylaxis. More recently, research projects have been conducted with the objec-
tive of analysing the potential resurgence of malaria in this region in the context of 
climate change (Ponçon et al., 2008). These studies identified  Anopheles ( Anopheles) 
hyrcanus (Pallas), which has rice fields as its primary larval habitat, as a potential 
vector (Ponçon et al., 2007).
In the example shown below, the relationships between land cover and entomological 
sampling data on the presence of An. hyrcanus presence were analysed in order to map 
the distribution of this species across Camargue (Tran et al., 2008).

Data
Entomological data
A total of 80 potential larval habitats (different types of wetlands, rice fields) were 
visited on a monthly basis during the period of mosquito activity, from April to 
October 2006, by teams from the French National Research Institute for Sustainable 
Development (IRD; Institut de recherche pour le développement). Mosquito larvae 
were collected according to standard entomological protocol and identified at a 
species level (Ponçon et al., 2007).

Remote sensing data
Two Landsat 7 Enhanced Thematic Mapper (ETM+, spatial resolution of 30 m) images 
were acquired during two contrasting periods (July and October) in order to map the 
main types of land cover in the area (Figure 2.2a).

Methods
Land cover classification
An object-based supervised classification (eCognition software12) was employed, 
utilising a training dataset derived from field observations and developed in conjunc-
tion with entomologists, with the objective of mapping the habitats of several species 

12. https://geospatial.trimble.com/en/products/software/trimble-ecognition

Spectral indices and classifications of multispectral images for vector risk 
mapping

https://geospatial.trimble.com/en/products/software/trimble-ecognition
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of interest across five distinct ecotypes (Figure 2.2b). This typology includes all poten-
tial larval habitats for Anopheles mosquitoes in the region: open water, rice fields, 
reedbeds, bulrush and rush marshes.

Statistical analyses
Correlations between the presence or absence of An. hyrcanus larvae (response vari-
able) and the type of larval habitat and distance to rice fields (explanatory variable) 
were studied using a logistic regression model.

Key results
Rice fields, bulrush marshes and reedbeds were identified by the logistic regression 
model as being highly correlated with the presence of An. hyrcanus larvae. These 
results confirm the potential of biotopes other than rice fields to serve as larval 
habitats for An. hyrcanus, which can explain the presence of the species at the end of 
summer and in autumn once the rice fields have been drained. Additionally, a map 
showing the probability of the species being present was generated across the entire 
study area using the land cover map (Figure 2.2c). This map was able to be validated 
by field data on the distribution of adult An. hyrcanus mosquitoes. It is important to 
note that this same approach was applied to data on other species of Anopheles and 
Culex mosquitoes. The results demonstrated that the distribution of larval habitats 
in wetlands influenced the spatial distribution of adult member of the species in 
cases where these species were highly dependent on a certain type of larval habitat 
(Cailly et al., 2011).

Figure 2.2. Map of the larval index in Camargue, derived from optical satellite imagery, 
highlighting the areas that are favourable to the Anopheles hyrcanus mosquito. Adapted from 
Tran et al., 2008.
(a) Background: Landsat ETM+ image. (b) Results of classification into different types of land cover. (c) Larval 
index for the species An. hyrcanus, ranging from 0 (highly unfavourable area) to 1 (highly favourable).
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 �Spectral indices derived from remote sensing images 
employed as environmental factors in the analysis  
of human cases of West Nile fever in Europe
Context
West Nile virus (WNV), the causative agent of West Nile fever (WNF), is transmitted 
by bites from mosquitoes of the genus Culex. Wild and domestic birds represent the 
primary hosts, with occasional transmission to humans or horses, which are consid-
ered accidental hosts and epidemiological dead ends. In Europe, the circulation of 
WNV has been periodically confirmed in recent decades in several countries of the 
Mediterranean basin. However, during the particularly warm summer of 2010, a 
significant number of human cases of WNF were reported in areas which had previ-
ously been unscathed (Paz et al., 2013). The study presented below sought to identify 
the principal environmental factors that contribute to the risk of human cases of WNF 
in Europe. To this end, it employed the use of spectral indices derived from remote 
sensing data (Tran et al., 2014).

Data
Epidemiological data
Data on confirmed human cases of WNF was catalogued at the district level in Europe 
from 2002 to 2013. For each year, a district (n = 1113) was considered as “infected” if at 
least once human case of WNF was reported in this district. If no cases were reported 
then it was considered “not infected”.

Remote sensing data
A time series of MODIS images was downloaded in order to cover the whole of Europe, 
with a frequency of 8 days throughout the period in question.

Other spatially explicit data
Other georeferenced data was used to characterise, at a district level, potential risk 
factors for the incidence of human cases of WNF: temperature, population, bird 
migration routes and wetlands.

Methods
Calculation of vegetation and water indices
The vegetation index (NDVI) and water index (MNDWI) presented at the beginning of 
this chapter (Equations 1 and 2) were calculated from a time series of MODIS images.

Statistical analyses
Correlations between WNV infection status (response variable) and population, pres-
ence of wetlands, presence of bird migration routes, temperature anomaly values, 
NDVI and MNDWI (explanatory variables) were studied using univariate analysis 
(testing variables one by one), then using multivariate analysis, combining the most 
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significant variables using a logistic regression model. The model was constructed 
using epidemiological data from the period 2001 to 2011, while the predictive capacity 
was tested using data from the period 2012 to 2013.

Results
The most effective model for predicting the infected/uninfected status of human cases 
of WNV at the district level incorporates temperature anomalies during July, the 
MNDWI at the beginning of June (9-16 June), the prevalence of WNV in the previous 
year, the presence of wetlands, the type of bird migration routes, and human popu-
lation levels (Figure 2.3a) as explanatory variables. These variables were found to be 
significantly and positively correlated with the probability of infection (Tran et al., 
2014). Using this logistic regression model, maps predicting the probability of WNV 
infection per district can be produced on an annual basis (Figure 2.3b). The results 
demonstrate the significance of water bodies in the transmission of WNV in Europe 
and the utility of a straightforward water index (MNDWI derived from MODIS images) 
in identifying surface water levels above the seasonal average in June, which can foster 
the proliferation of mosquitoes during the summer months and the  transmission of 
the virus to humans at the end of summer/start of autumn.

Figure 2.3. Risk map for the transmission of WNV in Europe based on environmental and 
meteorological indicators. Adapted from Tran et al. (2014).
(a) Analysis of a water index and various environmental predictors of WNV using a logistic regression 
model. (b) Infection risk map.
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 �Automated production of spectral indices:  
example of the Sen2Extract tool
The field of remote sensing remains a technically demanding area of study, requiring 
a comprehensive understanding of the methodologies, software, and algorithms 
employed in image processing, as well as the wide array of spatial data available. It is 
therefore unsurprising that the majority of satellite imagery utilised in the field of 
health is analysed indirectly with pre-calculated products, such as spectral indices, 
which are readily accessible and free to download. These products have enabled a 
community of users, including epidemiologists and statisticians with no prior knowl-
edge of remote sensing, to use and incorporate this technology in their studies. While 
these indices may not be best suited to the characteristics of the area of study or the 
problem at hand, in numerous instances their consistent availability across space and 
time has demonstrated their utility as invaluable indicators of seasonal fluctuations.
It was from this observation that tools were developed to automate the production 
of spectral indices from Sentinel-2A and 2B satellite images of the European Space 
Agency’s (ESA) Copernicus programme. As their name suggests, these two satellites 
were designed for the purpose of environmental monitoring. Consequently, they may 
prove to be a valuable resource for the monitoring of environmental diseases. They 
provide optical images covering the majority of the globe with a spatial resolution of 
10 m, and are made available free of charge every five days, since mid-2015. Among 
the tools developed is Sen2Extract, an online application13 that facilitates the straight-
forward extraction of time series of spectral indices for a specified period and enables 
the selection of sites according to the user's requirements. A simple and intuitive inter-
face (Figure 2.4) prompts the user to select their sites of interest by uploading a vector 
data file (points or polygons, in the zipped shapefile format), and then to choose the 
date range and indices to be calculated (NDVI and different water indices). Once the 
calculation is complete, an email is sent containing a download link for the results 
of the query. These results are presented in the form of a data table in CSV format. 
For each spatial entity (polygon or point) and each date, descriptive statistics are 
calculated for the values of the chosen index (mean, minimum, maximum, standard 
deviation, median, 25th and 75th percentiles, number of cloudy or 'no data' pixels). 
The final file is therefore very small (several kilobytes), in comparison to the size of a 
Sentinel-2 image and its post-processing, which can reach almost one gigabyte. This 
enables these images to be used in countries with limited internet access.
Sen2Extract represents the user interface for a set of algorithms developed as part 
of the S2-Malaria project (Tosca call for research proposals, funded by CNES from 
2017 to 2020). The objective was to produce useful satellite observational data for 
monitoring diseases. These algorithms were then optimised to assess the impacts 
of cyclones (RenovRisk Interreg project from 2018 to 2020). The Sen2Chain utility, 
written in Python, is situated upstream of Sen2Extract and constitutes the core of the 
production process for these indices. It allows Sentinel-2 images to be downloaded 
from two main catalogues, the ESA’s Copernicus Open Access Hub14 and the CNES’s 
Sentinel Products Exploitation Platform15 (PEPS). It integrates the ESA’s Sen2Cor 

13. https://web.seas-oi.org/sen2extract/
14. https://scihub.copernicus.eu/
15. https://peps.cnes.fr

https://web.seas-oi.org/sen2extract/
https://scihub.copernicus.eu/
https://peps.cnes.fr
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algorithm, which is used to perform atmospheric, terrain and cirrus corrections of raw 
images (level 1A), with the objective of obtaining level 2A data which is required for 
comparisons between different dates and scenes. This utility enables the generation of 
different spectral indices, and the integration of new indices if necessary. It then allows 
for the extraction of pixel values, which are used to calculate descriptive statistics for 
defined spatial entities on each date. The code of Sen2Chain is open source16, thereby 
enabling it to be freely reused and refined. Sen2Extract is implemented downstream 
to provide a query interface and perform calculations of index time series in accord-
ance with the user's requirements. This tool is written in R17 and the online interface is 
based on the R Shiny18 package. Furthermore, the code is open source, thereby facili-
tating its reimplementation19. It enables the submission of queries to Sen2Chain, and 
permits users to define extraction parameters and statistical calculations via a link 
sent by email. The online interface is installed on the servers of the SEAS-OI satellite 
ground station on Reunion island. Time series requests may be made primarily for 
image footprints acquired over the Indian Ocean. For other areas, it is recommended 
that these tools be installed on new computers or servers.
The set of tasks performed by these processing chains can be fully automated. This 
allows time series to be routinely generated for use by monitoring tools. The Lepto 
Yangon application20 is an example of a tool that can map environments conducive 
to the transmission of leptospirosis in the Yangon region of Myanmar. It can do so 
as soon as a new image is available (every 5 days). This automation of the produc-
tion of spectral indices over short time periods is a potential avenue for further study, 
particularly in relation to favourable environments for mosquito species for which 
links between these indices and their presence or abundance have been established.

Figure 2.4. Interface of the online tool Sen2Extract (https://web.seas-oi.org/sen2extract/).

16. https://framagit.org/espace-dev/sen2chain
17. www.R-project.org/
18. https://shiny.rstudio.com/
19. https://framagit.org/espace-dev/sen2extract
20. https://leptoyangon.geohealthresearch.org/

https://web.seas-oi.org/sen2extract/
https://framagit.org/espace-dev/sen2chain
http://www.R-project.org/
https://shiny.rstudio.com/
https://framagit.org/espace-dev/sen2extract
https://leptoyangon.geohealthresearch.org/
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Estimation of air temperatures  
from satellite images and weather stations

Barbara Boufhal, Alexandre Cebeillac, Éric Daudé

Mosquitoes of the genus Aedes are sensitive to temperature, i.e., their level of activity 
(searching for blood meal, movement, etc.) and larval development rate are conditioned 
by temperature. The comfort zone for these mosquitoes is between 21 °C and 32 °C, with 
a reduced probability of survival beyond these limits (Brady et al., 2013). At the global 
level, the prevalence of diseases transmitted by these mosquitoes is predominantly 
concentrated in tropical and subtropical regions (Bhatt et al., 2013). However, the 
distribution range of these vectors has now extended to North America and, notably, 
southern Europe, as a consequence of climate change. (Messina et al., 2019). Aedes 
aegypti mosquitoes are also synanthropic, meaning their life cycle is directly linked 
to the presence of human populations. Ae. aegypti females prefer small artificial larval 
habitats (flowerpots, water tanks, litter) to lay their eggs and they require a blood meal 
for egg maturation. The concentration of heat and humans in urban areas creates an 
ideal environment for vector populations to thrive.

This chapter is dedicated to the estimation of temperatures in urban environments 
and their potential impact on vector population dynamics. In essence, the temperature 
gradients present at the micro-scale can, depending on the context, either facilitate or 
impede the biological development of mosquitoes, and thus their proclivity to move 
and take blood meals, as well as influencing their reproductive cycle and survival rate. 
Consequently, accurately gauging temperatures at a fine-scale is an indispensable 
preliminary step in identifying local environments that are favourable or unfavourable 
to the mosquitoes. This chapter presents an array of data types for characterising ground 
and air temperatures, then a set of methods for estimating air temperature. It concludes 
with a comparative analysis of these methods as applied to Bangkok (Thailand).

 �Data to measure temperatures
An understanding of temperature fluctuations, or at the very least, their fine-scale 
variations, allows for a more precise characterisation of the micro-environments that 
can either sustain or limit the growth of mosquito populations. Urban heat islands 
are characteristic of this temperature differential, which can be quantified in inner-
city areas. The presence of a heat island is correlated to the concentration of built-up 
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areas, which absorb heat during the day and release it overnight. This contributes to 
an increase in minimum temperatures in densely populated areas. This can further 
promote the stability of Aedes populations, particularly during the coldest periods 
in urban areas of tropical regions, such as Delhi, India (Misslin et al., 2018), where 
dengue is endemic. It may, however, reduce survival rates during the hottest periods. 
In the conventional approach to the identification of heat islands, two temperature 
classes are typically employed: land surface temperatures and air temperatures.
Land surface temperature (LST) measurements utilise satellite imagery captured by 
different sensors. These images are available at various spatial and temporal resolu-
tions. It is pertinent to mention the Thermal Infrared Sensor (TIRS) on board Landsat 
8, with which it is theoretically possible to estimate surface temperatures on a fort-
nightly basis with a spatial resolution of 100 m. For shorter time periods, and therefore 
those more suitable for the mosquito development cycle, the MODIS sensor on board 
the Aqua and Terra satellites provides land surface temperature data at a resolution 
of 1 km, four times per day when meteorological conditions are optimal. One of the 
biggest constraints for satellite images, particularly in tropical and subtropical regions, 
is the frequent occurrence of a cloud ceiling, which significantly impairs their efficacy.
In addition to exhibiting spatial variability, land surface temperatures also display 
 variation when compared to air temperatures (Figure 3.1). These differences are 
explained by a combination of many factors acting at the local level, including soil 
moisture, surface roughness, and wind speed (Stisen et al., 2007). These temperature 
differences have a direct impact on vector development (Misslin et al., 2016).
The measurement of air temperature is conducted at weather stations. The location 
and positioning of these stations is subject to strict guidelines, with their location 
confined to shaded areas. The management of these facilities is the responsibility 
of local authorities. Data is collected at an altitude of 2 m from the ground, and the 
contrasting values recorded between different stations in the same town can be attrib-
uted to local variations in surface energy balance. One of the challenges when using 
this data is generally the density of territorial coverage, which often results in an insuf-
ficient number of stations to enable the reliable interpolation of data for large cities, 
given their diverse architectural and structural characteristics.
This chapter proposes combining these two data sources: satellite images (LST), which 
are incomplete over time, and weather station data, which is incomplete over space, 
in order to compare different methods of estimating air temperature in the Bangkok 
metropolitan area (Figure 3.1). For this study, we used the MODIS sensor, given its 
higher revisit rate and straightforward access to the images (USGS site21).

 �Air temperature estimation: different methods
Several methods exist to estimate air temperature based on land surface tempera-
tures. One simple method is based on the linear regression between air temperatures 
recorded by ground stations and land surface temperatures obtained from satel-
lite imagery. In the event that the number of data points is considerable (obtained 
over an extended period from a sufficient number of stations) and the correlation 

21. https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/modis-overview/

https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/modis-overview/
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 coefficient is strong, regression enables the estimation of air temperatures across 
the entire region based on land surface temperature data (Zaksek and Schroedter- 
Homscheidt, 2009). An alternative approach employs the energy balance of the 
observed surfaces and incorporates concepts from thermodynamics (Sun et al., 2005). 
Finally, regression analyses (linear or otherwise) between land surface temperature 
and other supplementary variables, such as land cover or altitude, can be employed 
(Benali et al., 2012; Oyler et al., 2014). The TVX (Temperature- Vegetation Index) 
method is based on this principle.
The TVX method is based on the assumption that the land surface temperature is in 
thermal equilibrium with the air temperature at the canopy level (Vancutsem et al., 
2010). Furthermore, it assumes that there is a negative correlation between temper-
ature and vegetative activity, as measured by the Normalized Differenced Vegetation 
Index (NDVI), and that atmospheric conditions are locally uniform (Stisen et al., 2007). 
Based on these principles, the TVX method consists of calculating linear regression 
between the LST values (Ts) and those of the NDVI in a moving window of a given size:

Ts~αNDVI + β (Equation 1)
By assuming the thermal equilibrium at the canopy, it is possible to retain the param-
eters of Equation 1 in order to obtain the following:

Ta~αNDVImax + β (Equation 2)
where NDVImax can either be chosen from ground station values of NDVI such that 
that it minimises the mean absolute error in the relationship defined by Equation 2 
(Method 1 or “traditional TVX”), or the maximum NDVI in the local window can be 
used (Method 2 or “local TVX”). The TVX method has the advantage of requiring 
minimal supplementary data input, in contrast to the statistical approach. Further-
more, it is not contingent on dense ground station coverage for the generation of 
accurate results (Misslin et al., 2018).
Subsequently, the TVX method is applied to the Bangkok metropolitan area (Method 1, 
“traditional TVX”) by proposing different variants, such as the use of local NDVImax 
(Method 2, “local TVX”) and temperature corrections related to the amount of built-up 
area (Method 3, “local and built-up TVX”). Indeed, if buildings influence temperature 
by generating a heat island effect, then incorporating them into the calculations may 
potentially enhance the precision of air temperature estimates.

 �Applications to Bangkok
For this case study, we relied on LST and NDVI data collected by the MODIS sensor 
on board the Terra and Aqua satellites from 30 June 2015 to 30 April 2022. A total of 
1,885 images were identified as potentially suitable for use, with a minimum of 50% 
of the area covered. However, due to significant cloud cover from May to November, 
these months only represent 17% of the sample (Table 3.1).
We also use a geographical layer containing more than 1.4 million buildings in Bangkok 
(see Chapter 4 for details about the method). Linear regression is applied to each of 
the images in a moving window (between land surface temperature and NDVI for 
Methods 1 and 2, with the inclusion of the building layer for Method 3). Subsequently, 
local regression coefficients and intercepts are obtained, as illustrated in Figure 3.2.
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Figure 3.2. Illustration of the methods used.
Method 2 (“local TVX”) follows the path drawn by the black arrows, with Method 3 (“local & built-up TVX”) 
including the elements in red, and Method 1 (“traditional TVX” approach) including those in blue. *Value* 
minimises the mean error for all stations in Method 1, whereas it corresponds to the local NDVImax for 
Methods 2 and 3.

Seven weather stations collect meteorological data across the study area. However, 
information on built-up surfaces is only available for five of these (those closest to the 
administrative boundaries of Bangkok, Figure 3.1). These stations provide air temper-
atures data every three hours, but only the temperatures taken during the closest 
approaches of the Aqua and Terra satellites are retained for the purposes of calibration 
and validation. We subsequently put forward three approaches, derived from the TVX 
method, for comparison.

The first method (Method  1) uses the approach proposed by Misslin et al. (2018). 
The objective is to identify the NDVImax value at which the discrepancy between the 
air temperatures recorded at the stations and the estimated air temperatures using 
Equation 2 is at a minimum. The method therefore consists of using the set of NDVI 
values recorded at each station and selecting the one which results in the lowest mean 
absolute error (MAE):

 
with Ta’ the estimated air temperature, Ta the recorded air temperature and n the 
number of observations.

The NDVImax value, representing the entire area, is subsequently employed in Equa-
tion 2 for the estimation of air temperatures. Seasonal updates to NDVImax enables 
the estimation of air temperature fluctuations across the study area (Table 3.1).

It is important to note that, in addition to the NDVImax values varying between 
months, they also demonstrate variation over the course of the day (Table 3.1). The 
extremely low values of NDVImax observed during the night highlight the importance 
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of the intercept (the coefficient β) in estimating nighttime temperatures. Indeed, as 
NDVImax approaches zero, Ta’ becomes very close to β (Equation 2). This observation 
must be taken into account when comparing the quality of these methods, particularly 
when estimating nighttime temperatures.

Table 3.1. NDVImax values per period (per month).

January February March April May to 
November December

NDVImax 
(daytime) 0.56 0.49 0.47 0.45 0.62 0.58

NDVImax 
(nighttime) 0.08 0.02 0.08 0.06 0 0.05

Number 
of images 333 388 334 200 328 302

The other two methods tested (Methods 2 and 3) calculate a local NDVImax using a 
moving window. In comparison with the global NDVImax calculated using Method 1, 
it is hypothesised that there is a significant variation in energy balance across urban 
areas due to the diversity of land use. This justifies the need to account for local varia-
tions. Method 2 therefore emphasises the link between land surface temperatures and 
local NDVImax, and Method 3 (TVX & built-up) incorporates the extent of built-up 
area into the calculation of regression coefficients by modifying Equation 1 as follows:

Ts~α1NDVI + α2built-up + β (modified Equation 1)
Figure 3.3 shows the distribution of correlation coefficients calculated for each MODIS 
image in a moving window Figure 3.3a) and the local averages obtained by Method 2 
(Figure 3.3b) and Method 3 (Figure 3.3c).

Figure 3.3. A comparison of correlation coefficients between surface temperatures and NDVI 
for Method 2, and surface temperatures and NDVI with the incorporation of building density 
for Method 3. 
(a) Histogram of global correlation coefficients R2 calculated for each MODIS image. (b) Average local R2 
(7 × 7 window) across all images for Ts ~ NDVI relationship. (c) Ts ~ NDVI + built-up.

We note that the addition of the built-up layer in the application of local linear regres-
sions increases global R² values (average of 0.18 for Method 2 and 0.25 for Method 3, 
Figure 3.3a). A similar observation can be made at the local level (Figures 3.3b and c). 



59

Estimation of air temperatures from satellite images and weather stations

However, if a significant number of areas exhibit high correlation coefficients, it becomes 
challenging to draw conclusions about the influence of urban structures on the rela-
tionship Ts ~ NDVI + built-up. While a high level of correlation is not a prerequisite 
for proceeding to the subsequent stages of the TVX method (Misslin et al., 2018), 
it is evident that incorporating a built-up layer in conjunction with NDVI markedly 
strengthens the relationship and may potentially enhance air temperature estimates.
Figure 3.4 shows the results obtained for each method alongside the LST of MODIS 
images for comparison. Figure 3.4a demonstrates a tendency for daytime air temper-
atures to be overestimated, while nighttime temperatures are, on the contrary, 
underestimated. However, during the daytime, the modes of estimated temperatures 
are closer to the recorded temperatures than the mode of LSTs. It is important to 
highlight that, despite the increased amplitude of deviations, Method 1 yields results 

Figure 3.4. Discrepancies between estimated and observed air temperatures
For each method: (a) day (left) and night (right); (b) mean absolute error (left) and correlation coefficient 
(right) across 6 periods of the year.
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that are more closely aligned with the temperatures recorded by ground stations. 
Conversely, at night, the methods employed to estimate air temperature do not miti-
gate the discrepancies between estimated and observed temperatures, particularly 
in the case of Method  1. Figure 3.4b illustrates the discrepancy in estimates across 
different periods of the year, quantified in terms of MAE and R². With regard to the 
latter indicator, the air temperatures recorded for the months of March and April 
are the most reliable, particularly when employing Method  2, which demonstrates 
marginally superior results in comparison to Method 3 (TVX + built-up). Method 1 
is an effective means of reducing the mean absolute error in comparison to the LSTs. 
However, it remains less effective than Methods 2 and 3, with deviations oscillating 
between 3.2 and 3.7 °C depending on the month in question.
The validation method, which involves a comparison of the results with data from 
ground-based weather stations, suffer from several drawbacks. Firstly, how can meso-
scale data be effectively compared to micro-scale data? The values recorded by these 
stations depend on their immediate environment, whereas the estimated air temper-
atures are averages across significantly larger areas. Furthermore, the number of 
stations is relatively low (5 in Bangkok at the time of the study), and their coverage 
is not sufficiently homogeneous to adequately represent the diverse urban structures 
present in Bangkok, which can influence temperatures (densely populated areas, 
sparsely populated, hybrid, etc.).
A comparison of the mean absolute differences between the various methods of esti-
mated air temperature and the LSTs (Figure 3.5) reveals the existence of areas where 
air temperatures exceed land surface temperatures as measured by MODIS, particu-
larly in the city centre. The inverse can also be noted, particularly to the east of the city 
in the vicinity of the airport (station 48429) [Figure 3.1]. The observed deviations can 

Figure 3.5. Differences between the sum of estimated daytime temperatures (from left to right: 
Methods  1, 2 and 3) and the LSTs measured by MODIS, weighted by the number of pixels 
containing data over the period in question: (a) across all of Bangkok, (b) across a smaller and 
more heterogeneous area to the south of the city.
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be explained by a high degree of heterogeneity in land cover at a local scale, particu-
larly in the area surrounding the meander to the south of Bangkok (Figure 3.5b), where 
vegetation-dominated areas meet densely populated areas. This local heterogeneity 
exerts an influence on the local regression coefficients and local NDVImax.

 �Conclusion
In this chapter, a comparative analysis was presented of the various methods employed 
for the estimation of air temperatures based on land surface temperatures derived from 
MODIS images. While the methodologies presented do mitigate discrepancies between 
observed and estimated air temperatures, these differences remain considerable, varying 
between 3 to 5 °C depending on the time of year and the method used. Nevertheless, it 
is challenging to compare temperatures estimated at the meso-scale and data measured 
at the micro-scale. It is indeed feasible that the mean effective air temperature in a 1 km2 
grid may diverge from the temperature recorded at the local level. This difference can 
be attributed to the placement of the station and its surrounding environment on the 
one hand, and the impact of smoothing across the grid on the other. Furthermore, the 
quality of the estimate is contingent upon the density of weather stations utilised and 
their local environment, which may not be uniform across the grid in question.
it is also important to acknowledge that the methodologies employed have the poten-
tial to introduce edge effects associated with the utilisation of a moving window in 
heterogeneous areas. The calculation of local regression coefficients in homogeneous 
areas from a land cover perspective would facilitate a more accurate comparison of the 
different methods.
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From census to buildings:  
generating synthetic populations

Alexandre Cebeillac, Olivier Gillet, Éric Daudé

A major challenge for the study of vector-borne diseases is the need for detailed 
knowledge of human population distribution at a high spatial resolution. In the case of 
dengue, clusters have been observed to vary in size between a radius of 200 and 800 m 
(Salje et al., 2012), which may result in epidemic explosions in densely populated 
areas. This has resulted in the development of a proven strategy for vector control, 
comprising targeted interventions in the vicinity of the index case, with the objective 
of reducing the prevalence and size of clusters. In the event of multiple outbreaks, this 
strategy must be refined to prioritise interventions in areas most at risk, which may 
include the most populated areas where vector presence has been verified. The inte-
gration of epidemiological data (e.g., via sentinel hospitals) and entomological data 
(such as mosquito risk maps) with population distribution can enhance the accuracy 
of predictions regarding the risk of incidence and spread of outbreaks.
Unfortunately, a significant proportion of metropolitan areas in tropical regions, 
which are severely affected by dengue, lack the necessary tools and population maps at 
very fine spatial resolutions to enable effective intervention. Indeed, institutional data 
is typically aggregated in accordance with administrative boundaries which do not 
apply to epidemiological mechanisms. Furthermore, the data is frequently outdated 
due to the rapid growth of some highly populated urban areas, and in some cases, it 
is not available at all. While these two aspects, related to the capacity of states and/or 
municipalities to conduct censuses, is not within the scope of this chapter, it is never-
theless feasible to employ disaggregation algorithms on the available course data to 
disaggregate populations into more granular spatial resolutions (Viel et Tran, 2009). 
Projects such as Landscan (Dobson et al., 2000), Worldpop (Linard et Tatem, 2012) 
and the Global Human Settlement Layer (GHSL; Florczyk et al., 2019) are heading 
in this direction by proposing global population distribution maps with maximum 
spatial resolutions in the order of one kilometre and down to 250 m.
Below, we present a case study on Bangkok (Thailand) in order to facilitate a more 
detailed examination of the spatial disaggregation of population data. For this metro-
politan area, we obtained census data on populations at the district level, in addition 
to a layer representing buildings in two dimensions. We then describe a second 
use case for the disaggregation of population data at another site (Rouen, France). 
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We   demonstrate the application of algorithms that estimate population distribu-
tion within buildings, as well as a realistic representation of the composition of each 
household. This final point is particularly noteworthy in the context of dengue, for 
which there is a strong link between the seroprevalence and the age distribution of 
the population. The results of these algorithms can also represent interesting data for 
simulation models (Chapter 9).

 �Population disaggregation and redistribution
Traditional dasymetric mapping
Dasymetric mapping, which literally means “measuring density”, was first used in 1911 
by Semenov-Tian-Shansky (Petrov, 2012) and subsequently popularised by Wright in 
1936 (Li and Weng, 2005). It involves the distribution of population counts from a 
source zone to a set of target zones based on thematic characteristics. Historically, 
this entailed the redistribution of populations from administrative areas to inhabited 
areas within the same geographical entity. This principle has been gradually refined 
by the use of multiple linear regression between the gridded population data and land 
use/land cover within the same grid (Equation 1).

Ps = β0 + β1U1 + β2U2 + … + βnUn (Equation 1)
This method proposes a description of the population distribution Ps in a source 
zone using multiple regression, where each land use category Un is associated with 
a coefficient βn. These coefficients, which represent population densities associated 
with different categories of land use, are subsequently employed for the purpose of 
weighting, thereby facilitating the disaggregation of the source population into each 
target zone in accordance with its surface type. In an ideal scenario, the correlation 
coefficient would approach a value of 1.
This method was subsequently employed to estimate fine-scale population data 
for Bangkok (Misslin and Daudé, 2017) based on OLI and TIRS (Landsat  8) satel-
lite images. The proportion of loosely, densely and very densely built-up areas within 
subdistricts of Thailand's capital city was estimated using unsupervised classification. 
Dasymetric mapping in this context is based on the assumption that a pixel of densely 
built-up area will accumulate more population than a sparsely built-up area. Each pixel 
is therefore assigned a coefficient (β), obtained by using multiple regression across the 
entire zone corresponding to its category (U), which is multiplied by the population of 
the geographic zone in which it is located (Figure 4.1).
Since Landsat 8 satellite images are available for the whole Earth, and this is a well-
proven methodology (Hallot et al., 2019), this approach has the advantage of being 
reproducible in disparate locations, provided census data is available for the area of 
interest. Other thematic data can also be used to characterise the link with population 
distribution, such as soil water repellency and its relative surface area (Hallot et al., 
2019), or even data on artificial light at night (Briggs et al., 2007).
Nevertheless, any unsupervised classification is inherently imperfect. The advent of 
new services, such as Google Maps and ESRI22, which provide data on the footprint 
of buildings and their use, offers promising avenues for further research. This consists 

22. https://www.esrifrance.fr/

https://www.esrifrance.fr/
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of counting the inhabited buildings and taking into account their footprint within each 
census tract, thus enabling the application of the same linear regression techniques. 
For example, OpenStreetMap (OSM) data is freely available and provides informa-
tion on land cover and land use categories for a specified geographic area, as well as, 
on occasion, the footprint of buildings. However, the accuracy and reliability of this 
crowd-sourced data greatly depends on the location. While highly accurate in France, 
this information is not as precise in other parts of the world, especially in Bangkok. 
However, by downscaling geospatial data, it is possible to overcome this obstacle.

Figure 4.1. Dasymetric map of population distribution in Bangkok on a 30 × 30 m grid. Source: 
Misslin and Daudé (2017).

Refining thematic data to improve dasymetric mapping
Web scraping methods allow online databases (private or public) to be accessed, such as 
those of the ESRI’s Web Map Service (WMS). These databases facilitate the generation of 
thematic maps that delineate the spatial distribution of buildings (Figure 4.2a). A visual 
comparison between satellite images and data representing buildings from the ESRI’s 
WMS in Bangkok demonstrates that the buildings are accurately represented. Code was 
developed to extract all of this information23, firstly in raster form (Figure 4.2b), then 
using vectors24 (Figure 4.2c and d), generating a database of 1.4 million polygons.

23. It should be noted that web scraping is now legal according to a ruling by a U.S. appeals court  
(https://techcrunch.com/2022/04/18/web-scraping-legal-court/).
24. https://drive.univ-rouen.fr/f/a20e1dc3baad49caadec/?dl=1

From census to buildings: generating synthetic populations

https://techcrunch.com/2022/04/18/web-scraping-legal-court/
https://drive.univ-rouen.fr/f/a20e1dc3baad49caadec/?dl=1
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Figure 4.2. Process of extracting buildings from an ESRI WMS image.
(a) Raw data, (b) colour intensity change, (c) extraction of built-up polygons, and (d) their projection on to 
a satellite image for visual comparison.

This 2D representation of buildings in Bangkok25 allows for the calculation of the 
number of buildings, the cumulative perimeter of these buildings, and the built-up 
surface area for each zone, which in this case are the subdistricts. Additionally, 
Bangkok is a city where winding neighbourhoods comprising one- and two-storey 
buildings are interspersed with large blocks of flats. The inclusion of height estimates 
can thus provide additional useful information for the disaggregation of population 
data. For this, we collected data from the SRTM (Shuttle Radar Topography Mission) 
to obtain digital elevation models (DEM) with a surface resolution of around 30 m at 
the equator26. A digital terrain model (DTM) was then constructed by interpolating 
the average altitude of canals and rivers in the city to determine a baseline, which was 
then subtracted from the DEM to obtain local elevation27. Finally, the differentiation 
between inhabited and uninhabited areas was made possible by the incorporation of 
a land use layer from OSM. This allowed buildings located in non-residential areas to 
be removed (temples, industrial zones, shopping centres, recreational facilities, etc.), 
as well as removing vegetated areas and water bodies.
Using this data, several linear regressions were calculated between the population of 
Bangkok per subdistrict and land use data: the number of buildings, built-up surface 
area and boundaries, and the average altitude in each of these subdistricts (Figure 4.3a). 
We then selected the combination of factors from Equation 1 which gave the lowest 
possible mean absolute error and the best correlation coefficient. The latter is obtained 
by using all indicators of a built-up area (Figure 4.3b). However, the combination of at 
least two parameters (regardless of which) results in R² correlation coefficients greater 
than 0.81. Indeed, with regard to Figure 4.3a, the majority of the parameters that define 
built-up areas are highly correlated with population (R2 > 0.75).
We then proceeded with three steps. Initially, a grid of the desired size was created 
(e.g., 50 m) and from this, information on buildings was inferred (number, length, height, 
and built-up surface area in each grid square). Subsequently, the linear regression coeffi-
cients linking population to these indicators at the subdistrict level were applied to each 
grid square. Finally, the population within each grid square was adjusted according to 
subdistrict, in alignment with the census population data for that area. A breakdown 
of the population is thus obtained for a grid square of a given resolution (Figure 4.4b). 

25. https://drive.univ-rouen.fr/f/d71c73ffd3504ae28068/?dl=1
26. https://earthexplorer.usgs.gov/
27. https://drive.univ-rouen.fr/f/f282bacb588e43818c75/?dl=1

https://drive.univ-rouen.fr/f/d71c73ffd3504ae28068/?dl=1
https://earthexplorer.usgs.gov/
https://drive.univ-rouen.fr/f/f282bacb588e43818c75/?dl=1
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Nevertheless, as shown in Figure 4.4c, depending on the multiple regression models used 
at the beginning, significant local variations may be present. These are primarily located 
in areas with tall buildings, which implies that the regressions taking into account eleva-
tion will tend to concentrate the populations within these grid squares, unlike other 
approaches which will distribute the population more homogeneously.

Figure 4.3. Relationships between building characteristics in a given geographical area and the 
associated population.
(a) Correlations (R²) between pairs of parameters, and (b) regression between known populations at the 
subdistrict level and those estimated using a set of land cover indicators (black line, blue line corresponds 
to the relationship y = x).
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High resolution spatial mapping of population density can therefore aid in  decision- 
making (increased vector control in the most densely populated areas) or be used as 
inputs for different models (see Chapter 9). In this regard, recent advances have led 
to new innovations in qualifying high spatial resolution population data. This process 
entails not only counting the individuals within a given area, but also the characteri-
sation of each individual present. We will illustrate this approach in the city of Rouen, 
Normandy (France).

 �Synthetic populations, a methodology which supports 
the fine-scale analysis of health-related issues
Computing a synthetic population consists of creating an exhaustive and statistically 
representative set of individuals and households for a given territory (Lovelace and 
Dumont, 2016). Several methods have been developed in recent years (synthetic 
reconstruction, combinatorial optimisation, statistical learning) to generate sets of 
agents with realistic demographic attributes. The availability and precision of the data 
will inform the choice of methodology to be employed: with or without sampling, 
deterministic or stochastic.

Principle of generating a synthetic population
The most commonly used algorithm for generating a synthetic population is IPF, 
for Iterative Proportional Fitting (Hörl and Balac, 2021). This algorithm uses two 
types of data: a representative sample of individuals described using multiple terms 
and the total number of individuals in the population per term. The algorithm will 
then generate a population of individuals equivalent to the overall population, while 
respecting the relative distribution of the sample per cross-referenced term. However, 
IPF is not equipped to handle nested data structures, for example, a number of 
households composed of n individuals. This algorithm is aimed at finding optimal 
distribution either at the household or at the individual level (Khachman et al., 2021). 
The loss of information may prove problematic, particularly when considering indi-
vidual mobility, which is often contingent upon the individual’s characteristics and 
those of the household. Other methods have been developed to compensate for this 
loss, such as Iterative Proportional Update (Ye et al., 2009) and the Hierarchical 
 Iterative  Proportional Fitting (Yameogo et al., 2021). These algorithms therefore 
consider not only information at the individual level, but also at the household level in 
their processes of reconstructing synthetic populations.

From populations to households and from households to individuals
In France, thanks to populations censuses, highly accurate information is available on 
population characteristics: age, occupations, modes of transport used, housing condi-
tions, etc. A synthetic population of Rouen was generated from 2017 data using an 
IPF algorithm applied to all of the census tracts, known as IRIS (îlots regroupés pour 
l’information statistique). A total of 62,121 households and 110,142 individuals were 
generated using all 42 IRIS census tracts from the study area. The second stage in 
this generation process consisted of breaking down the individuals and households 
located in the buildings of each IRIS. First, it was necessary to estimate the number 
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of  inhabitants using the characteristics of residential buildings taken from the BD 
TOPO28 database of France’s National Geographic Institute (IGN). The number of 
inhabitants is thus contingent upon the number of floors, as well as the surface area 
of each floor in relation to the total surface area of residential buildings. Households 
were then broken down into buildings according to the number of inhabitants and the 
theoretical occupancy of the accommodation.

28. https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo

Figure 4.5. Distribution of households across three IRIS census tracts in Rouen. (a) Spatial 
distribution. (b) Structure of social groups: (1) one-person household, (2) single-parent 
household, (3) childless couple, (4) couple with child, and (5) complex households.

https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo
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Figure 4.5 illustrates the outcomes of this synthetic population generation process 
across three IRIS census tracts from Rouen (Vieux-Marché – Palais de Justice, 
Vieux-Marché – Saint-Patrice, Beauvoisine). The map represents the number of 
households in each building and the histogram shows the distribution of these types 
of households in the three IRIS. The same method can then be used to the further 
break down the population into age categories.

 �Conclusion
Knowledge on population distribution can limit the risks of human exposure to vector-
borne diseases. The epidemic risk is a consequence of the simultaneous spatial and 
temporal coexistence of hosts and vectors. This chapter presents a number of tech-
niques for disaggregating census data from disparate data sources. Census data is 
frequently presented as gridded data constructed from administrative units, which is of 
limited relevance to the epidemiological issues under consideration. While the spatiali-
zation of individuals is now feasible at high spatial resolutions, one of the key challenges 
to be addressed is how these locations evolve over time. The socio- demographic data 
presented here are based on censuses taken from the place of residence. As a result, it is 
not possible to evaluate individual exposure risk when travelling to different locations.
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Chapter 5

Satellite image texture  
and characterisation of urban environments 

favourable to vector mosquitoes
Claire Teillet, Ophélie Hoarau, Nausicaa Habchi-Hanriot,  

Benjamin Pillot, Thibault Catry, Annelise Tran

Texture is an important concept in image processing. It is used during classification, 
segmentation and image generation (Busch et al., 2004). Texture data is frequently 
employed in conjunction with spectral information to describe an image (Pacifici 
et al., 2009). This is achieved by decomposing the image into frequency and orienta-
tion components. Haralick (1979) demonstrated that a texture can be represented by 
two dimensions. The first dimension corresponds to the description of the frequency 
and orientation of the texture’s primitives, while the second dimension corresponds 
to the spatial organisation of these primitives (Haralick, 1979). The concept of texture 
is highly dependent on the specific context and challenging to generalise. It is funda-
mentally rooted in the study of homogeneity within grayscale levels through the 
identification of primitives within the image (Caloz and Collet, 2001).
The main concepts in texture analysis are illustrated in Figure 5.1. The regular repetition 
of a primitive in one or more directions corresponds to an anisotropic image, whereas 
the random distribution of pixels in all directions is considered an isotropic texture, 
which is characterised by a certain level of homogeneity in its structure. An  aniso-
tropic texture is therefore characterised by direction-dependent properties, whereas 
an isotropic texture has properties that are independent of direction. The terms micro-
texture and macrotexture are used to describe the respective levels of detail in a texture, 
from the very fine to the coarser (Figure 5.1b). In addition, texture varies with the scale 
of observation. An analysis window of an object must be large enough to include the 
primitive defining the texture, but sufficiently small to preserve spatial dependency and 
enable identification of the texture that corresponds to the object (Figure 5.1c). During 
changes in scale, and thus the analysis window, one primitive may be lost whereas others 
may be emphasised. This concept of texture analysis scaling is analogous to the spatial 
resolutions of Earth observation images employed as inputs in textural  information 
extraction methods (Figure 5.1d).
Texture analysis has been a widely employed to process and extract information 
from satellite images, particularly in the context of studies on forest and urban 
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 environments (Lefebvre, 2011; Pandey et al., 2021; Proisy et al., 2007; Puissant 
et al., 2006; Ruiz Hernandez and Shi, 2018). In urban environments, the density and 
proportion of vegetation and built-up areas, as well as the spatial layout between the 
two, are the primary components of texture. To date, texture data has been very rarely 
used in the study of vector-borne diseases caused by certain species of mosquitoes 
(see Chapter 1). However, it can serve to augment the environmental, climatic and 
demographic indicators presented in preceding chapters, particularly in the case of 
dengue vector mosquitoes Ae. aegypti and Ae. albopictus, which are predominantly 
found in urban settings.

Figure 5.1. Key concepts for the analysis of satellite image textures.

This chapter presents a number of methods for the analysis of textures. In particular, 
the implementation of the FOTO approach (Couteron et al., 2006) to very high spatial 
resolution Pléiades images has facilitated the study of the relationships between urban 
variables, the distribution of dengue cases and the availability of larval habitats in 
Brazil and La Réunion.

 �Different methods to characterise image texture
A number of methods exist to analyse textures, including statistical analysis and 
frequency-domain analysis.

An example of statistical analysis: the grey level co-occurrence matrix 
and Haralick features
This approach is based on the statistical representation of grey levels, which consists of 
calculating a co-occurrence matrix for said levels (GLCM, Grey Level Co-occurrence 
Matrix). This matrix is the graphical representation of the number of occurrences 
of grey level pairs separated by a certain distance in a given direction (Figure 5.2a). 
Haralick (1979) proposed the calculation of features based on this matrix, with those 
most relevant to the study of urban environments being energy, entropy, contrast, 
correlation and homogeneity (Maillard, 2003; Pacifici et al., 2009).
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An example of frequency-domain analysis: the Fourier transform
In the nineteenth century, Fourier demonstrated that periodic functions can be expressed 
as a sum of sine and cosine functions. A discrete signal can thus be represented by a 
function composed of a fundamental frequency (the lowest), harmonics (multiples) and 
Fourier series coefficients. It is these coefficients that facilitate an understanding of the 
contribution of each frequency to signal formation (Caloz and Collet, 2001).
The frequency-domain representation of a Fourier transform is an amplitude spec-
trum, which corresponds to energy values for each frequency (Figure 5.2b). The 
spectrum considers the distribution of energy within the image while preserving infor-
mation on the texture's frequency and orientation. A greater distance from the centre 
results in a higher observed frequency. A smooth texture will exhibit a spectrum that 
corresponds to low-frequency values at the centre. In contrast, a coarse texture will 
display values that are more spread out across the spectrum corresponding to higher 
frequencies (Regniers, 2014). Fourier transforms facilitate a transition from the spatial 
domain to the frequency domain. This is achieved by the decomposition of the signals 
that constitute the texture into their constituent frequencies.
The FOTOTEX algorithm is based on this frequency-domain approach utilising 
Fourier transforms. The following section presents a detailed account of the method 
and principle of implementing this algorithm.

Satellite image texture and characterisation of urban environments favourable to 
vector mosquitoes

Figure 5.2. Example of texture analysis using (a) statistical analysis via grey level co-occurrence 
matrix and Haralick features, and (b) frequency-domain analysis via 2D Fourier transform 
spectra for: (1-1’) grasslands, (2-2’) cereals, (3-3’) grasslands + cereals. Sources: (a) Brynolfsson 
et al. (2017); (b) Lefebvre (2011).
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 �Study of the relationships between urban variables  
and the distribution of dengue cases in Brasília  
using a texture-based approach
Context
In the framework of the Apureza project (Remote sensing analysis of relationships 
between urban landscape factors of dengue and Zika) financed by the CNES (2017-
2020), a multi-scale classification algorithm for the textures of urban areas was 
developed. It aimed to evaluate the value of a frequency-domain approach to texture 
analysis in the study of relationships between urban variables and the distribution 
of  dengue cases, in particular in the administrative region of Sao Sebastiao in the 
city of Brasilia (Teillet et al., 2021).
In recent years, a dramatic rise in cases of dengue has been observed in Brasilia: in 2004-
2005, there were 200 confirmed cases, but by 2015, this number had reached 11,722.

Data
In order to characterise the urban footprint, a high resolution (HR) Sentinel-2 image 
acquired on 31 August 2018 was used, downloaded from the ESA’s (European Space 
Agency) Copernicus29 data space ecosystem for Sentinel products. Sentinel-2 images 
comprise thirteen spectral bands, with a spatial resolution of between 10 and 60 m.
To characterise inner-city environments, a very high resolution (VHR) Pléiades image, 
captured on 14 January 2020, was provided by the GEOSUD team in Montpellier30. 
This image includes multiple bands: a panchromatic band P (480-830 nm) at 0.7 m 
resolution, resampled to 0.5 m, and multispectral bands (MS) at 2.8 m, resampled to 
2 m, including blue (430-550 nm), green (490-610 nm), red (600-720 nm) and near- 
infrared (750-950 nm) channels.

Method
The methodology developed uses texture information extracted from Earth obser-
vation data acquired at different spatial resolutions in order to characterise urban 
landscapes of the Global South at three different scales, defined by Theia’s “Urban” 
Scientific Expertise Centre (SEC)31:

 – urban footprint (macro-scale);
 – urban cell scale (meso-scale);
 – object scale such as buildings (micro-scale).

For this, the FOTOTEX algorithm, which is based on the FOTO (Fourier-based 
Textural Ordination) algorithm, is employed. The original objective of the FOTO 
 algorithm was to characterise ecosystem vegetation models (Couteron et al., 2006; 
Proisy et al., 2007). In order to provide a simple, robust and effective tool, this version 
of the algorithm was developed in Python and made available online32. The algorithm 

29. https://dataspace.copernicus.eu/
30. https://ids-dinamis.data-terra.org/
31. https://www.theia-land.fr/en/ceslist/urban-sec/
32. https://framagit.org/espace-dev/fototex

https://dataspace.copernicus.eu/
https://ids-dinamis.data-terra.org/
https://www.theia-land.fr/en/ceslist/urban-sec/
https://framagit.org/espace-dev/fototex
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has been optimised in terms of process and calculation time. Further details on the 
utilisation and configuration of parameters for the FOTOTEX algorithm can be found 
in the article by Teillet et al. (2021). The method is summarised below:

Step 1: Image partitioning
The first step in this method is to partition the image (Figure 5.3a). This partitioning 
corresponds to defining a parsing window’s path rule on the image. Two methods for 
partitioning images are available. The first is the block method (method = “block”), 
which analyses the texture for each image window block by block. The second is the 
moving method (method = “moving_window”), which analyses texture for a given 
window by sliding from west to east and from north to south with a shift of one pixel.

Step 2: Spectral analysis by Fourier transform and “r-spectra” computing
A fast Fourier transform (FFT) is computed for each analysis window of the orig-
inal image and allows the variance of an image to be expressed as a weighted sum of 
cosine and sine waveforms of varying direction and spatial frequency (Couteron et al., 
2006; Lang et al., 2018; Proisy et al., 2007; Figure 5.3b). The weighting coefficients 
quantify the contribution of each frequency and each direction to signal formation. 
A  “periodogram” is computed for each window and expresses the proportion of vari-
ance explained by each frequency pair (p,q), where p and q are spatial frequencies 
along the image column and row directions (Proisy et al., 2007). Finally, an isotropic 
r- spectrum is computed by averaging the periodogram in all directions (from 0° to 360°) 

Figure 5.3. Simplified methodological framework of the FOTOTEX algorithm.
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to obtain an averaged radial spectrum, called “r-spectrum” and denoted by I(r), for 
each analysis window. A table compiling the r-spectra is produced. In this table, each 
row corresponds to the r-spectrum of a window, and each column corresponds to a 
spatial frequency (Lang et al., 2018).

Step 3: Principal component analysis
Principal component analysis (PCA) is applied to the r-spectra table in order to summa-
rise the information content (Figure 5.3c and d). This statistical method ordinates the 
correlated variables into new variables, called “principal components” or “principal 
axes”, which are decorrelated from each other—the information is thereby reduced, 
since the first principal axes are sufficient to represent a large portion of total variability. 
The first three main components resulting from PCA are textural indices which can then 
be visualised in form of a red-green-blue (RGB) composite image (Proisy et al., 2007).

Results
Figure 5.4 shows the results obtained for Sao Sebastiao, a satellite City of Brasilia 
in Brazil (Figure 5.4a). Texture information obtained with FOTOTEX allows the 
urban footprint (macro-scale) to be outlined in the Sentinel-2 image, in addition to 
the identification of neighbourhoods represented by different texture information 
within this urban area (Figure 5.4b).

Figure 5.4. Distribution of dengue case clusters in Sao Sebastiao (Brasilia) as a function of 
neighbourhood type identified by Pléiades image textures.
(a) Location of the area of study, the administrative region of Sao Sebastiao, Brasilia (Brazil). (b) Case clusters 
of dengue identified by SATSCAN from 2007-2017. (c) RGB colour composite output by FOTOTEX. (d) 
Organisation of built-up areas and vegetation on a Pléiades image defining the urban typology corresponding 
to each cluster.
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These neighbourhoods are linked to a heterogeneous spatial and temporal distribution 
of dengue cases (Figure 5.4c). Case clusters were identified using SATSCAN33 soft-
ware on geolocation data for dengue cases in the area from 2007-2017 sourced from 
the SINAN database34. Each cluster is characterised by a distinctive urban landscape 
configuration, with a specific spatial organisation between built-up areas (structure, 
density, height) and urban vegetation (Figure 5.4d).
The results of statistical analyses have demonstrated that the density of the built-up 
area and the proportion of vegetation, which are the primary factors comprising 
texture information in urban environments, are positively correlated with the number 
of dengue cases in Sao Sebastiao. Positive correlations also exist with other variables, 
such as land surface temperature.

 �Map of potential larval habitat distribution  
of the Asian tiger mosquito on Reunion island
Context
In the context of the ANISETTE project (Inter-Site Analysis: Evaluation of Remote 
Sensing as a predictive tool for the surveillance and control of diseases caused by 
mosquito), the FOTOTEX algorithm described above was applied to Reunion island. 
This French department, situated in the Indian Ocean, has rugged terrain (between 
0 and 3070 m), resulting in the concentration of habitats along coastal areas. On this 
island, the Asian tiger mosquito, Aedes albopictus, is the primary vector of arbo-
viruses, such as dengue (epidemics in 1977, 2004 and since 2016) and chikungunya 
(epidemic in 2005-2006). In this study, the relationships between the textural indices 
obtained and data collected in the field on the number of larval habitats of Asian tiger 
mosquitoes were analysed. This was done to map areas conducive to Ae. albopictus 
proliferation at a regional scale (Hoarau, 2021).

Data
Asian tiger mosquito larval habitat data
As part of its vector control (VC) efforts, the regional health agency (ARS) of 
La Réunion collected data on larval habitats by going door-to-door and prospecting 
gardens (Figure 5.5). For each area of entomological surveillance (AES), comprised of 
around 200 houses, data was collected on the number and type of potential breeding 
sites. For this study, we had access to data on 346 AES (out of a total of 1,203 moni-
tored by the ARS, i.e., one quarter) collected between January 2020 and March 2022.

Environmental data
The Pléiades 2020 image mosaic of La Réunion is a product generated from twelve 
images provided in the context of the Kalideos programme35. The characteristics of 
these images have been described in previous sections.

33. https://www.satscan.org/
34. https://portalsinan.saude.gov.br/
35. https://www.kalideos.fr

https://www.satscan.org/
https://portalsinan.saude.gov.br/
https://www.kalideos.fr
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Figure 5.5. Type and distribution of Asian tiger mosquito larval habitats in La Réunion,  
2021-2022.
(a) Number of potential habitats observed per neighbourhood. (b) Distribution according to type of habitat 
observed. Source: (a) ARS La Réunion data.

Data on annual rainfall and mean annual temperature, obtained by interpolating data 
from the Météo-France/CIRAD monitoring network, was downloaded from AWARE, 
the Agricultural Web Atlas for Research36.

Methods
Textural index calculation
After performing different tests on the image extracts, the FOTOTEX algorithm 
was applied following the steps described above to the built-up areas of the Pléiades 
mosaic (Figure 5.6a), with a square window measuring 67 pixels per side (i.e., 33.5 m) 
and using the block method of image partitioning (Figure 5.6b).

36. https://aware.cirad.fr/

https://aware.cirad.fr/
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Spectral index calculation
Several indices were calculated from the Pléiades mosaic: vegetation indices 
(Figure 5.6c) and normalized difference water indices (these indices are described 
in Chapter 2), in addition to the brightness index (BI) calculated from the red and 
near-infrared bands which highlight reflective surfaces such as buildings, roads, bare 
ground, etc. (Figure 5.6d).

Statistical analyses
The correlations between the number of potential larval habitats observed (response 
variable) and the average textural and spectral indices, as well as mean annual rain-
fall and temperature for each neighbourhood (explanatory variables), were analysed 
using univariate analysis (by testing the variables one by one), then using multi-
variate analysis, combining the most relevant variables with the help of a generalised 
linear model (GLM).

Figure 5.6. Illustration of textural and spectral indices calculated from a Pléiades mosaic, 
Reunion island, 2020, and predictive map of the number of potential larval habitats of the Asian 
tiger mosquito per area of entomological surveillance (AES).
(a) Pléiades  2020 mosaic. (b) RGB colour composite output by FOTOTEX. (c) Vegetation index (NDVI). 
(d) Brightness index (BI) (e) number of predicted potential larval habitats per AES.
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Results
As with the study sites in Brazil, the visualisation of textural indices output by 
the FOTOTEX algorithm provides insight into the typology of neighbourhoods 
(Figure 5.6b):

 – neighbourhoods with very high building density and little vegetation;
 – neighbourhoods with more spread-out buildings, separated by vegetation;
 – neighbourhoods with very low building density and lots of vegetation;
 – industrial zones characterised by the presence of large buildings, large impervious 

surfaces and little vegetation.

These indices, combined with other environmental variables (spectral indices, rain-
fall, temperature) have been identified as highly correlated with field data on larval 
habitats of Ae. albopictus (Hoarau, 2021). The resulting relationship allows for the 
prediction of the number of potential larval habitats for all neighbourhoods on the 
island, based on the environmental variables (Figure 5.6e).

 �Conclusion
The results presented in this chapter, based on the use of FOTOTEX, demonstrate 
the value of textural information for the characterisation of urban areas. The addi-
tion of texture provides supplementary information to that derived from spectral 
indices or land use. In particular, it is possible to describe urban environments at 
different scales, including the ability to describe urban cells characterised by specific 
typologies (heterogeneous spatial organisation of built-up areas and vegetation). 
This information has proven to be particularly useful in the study of relationships 
between urban landscapes and the spatiotemporal dynamics of dengue using very 
high spatial resolution satellite imagery (Pléiades, SPOT 6/7), as shown in Brazil 
and La Réunion.

In both of these areas, statistical analyses have highlighted that the texture signal of 
urban cells is highly correlated with the spatial distribution of dengue cases (Brazil), 
and it represents a reliable indicator of the number of potential larval habitats in urban 
areas (La Réunion). The identification of these correlations represents a significant 
contribution to the study of mosquito population dynamics and the risk of dengue 
transmission in urban environments. By fairly accurately predicting the number of 
potential larval habitats, the texture contained in very high spatial resolution satellite 
images can compensate for the lack of in situ data.

These datasets, which are essential for calibrating and validating model outputs 
for predictive mosquito mapping, such as AlboRun (Tran et al., 2020) or Arbo-
carto (see  Chapter  8), are unfortunately scarce, which often significantly 
constrains their applications in public health. It is thus feasible to employ texture 
information as an input variable in models of sites where larval habitat data is 
lacking. Furthermore, the links between texture and the spatiotemporal dynamics 
of cases presents a novel avenue for investigating dengue transmission risk based 
on satellite imagery. However, this remains a very complex mechanism involving 
a multitude of variables, thereby  necessitating the use of additional data to 
 supplement satellite imagery.
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Part 2

Analysing and predicting the effect 
of environmental variables  

on the distribution and dynamics 
of vector mosquitoes

A model is a simplified representation of a real-world system and therefore always 
contains a number of simplifications in order to answer a given question. This is why 
modellers often quote the phrase of the statistician George Box, “All models are wrong 
but some are useful”. With regard to vector-borne diseases, and in particular those 
involving mosquitoes, the modelling approaches are highly complementary to exper-
imental and observational approaches. Modelling can be used from two different 
perspectives. This first is about gaining a better understanding of the distribution of 
vectors, their dynamics, and their links with environmental and climatic variables 
(such as those outlined in Part 1), in addition to the epidemiological transmission cycle 
of vectored pathogens. The second allows for the prediction of the presence of vector 
mosquitoes, their abundance, and the risk of transmission, as well as the variation of 
these factors in different scenarios, in both space and time. Modelling approaches are 
varied, and the choice depends on the question needing to be answered, the  knowledge 
about the system, available data, etc.
In Part  2, different modelling approaches are presented, as well as the operational 
tools for entomological or epidemiological surveillance and vector control developed 
using these approaches, with examples given for different geographical contexts. 
The first chapter of Part 2 (Chapter 6) describes data-driven models (models of species 
distribution or ecological niches). The following chapters present knowledge-based 
approaches (Chapter 7) and processes at the scale of populations (mechanistic models: 
Chapter 8) or individuals (behavioural models: Chapter 9).
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Chapter 6

Data-driven models: mapping the spatial 
distribution of vectors

Yi Moua, Emmanuel Roux

The mapping of a species (animal or plant), and a fortiori a vector mosquito species, 
may be done with the help of expert knowledge and the use of the multi-criteria analysis 
methods discussed in the subsequent chapter (Chapter 7). Alternatively, the mapping 
process may result from the implementation of so-called “mechanistic” models, i.e., 
those explicitly based on the knowledge of bioecological processes which govern the 
life cycle of individual members of a species (see Chapters 8 and 9). However, there 
may be a lack of knowledge about the species in question, which may impede the 
construction of such models. An alternative approach is to construct models based on 
observations made at specific sites, with the aim of developing a model of the habitats 
of the species. This enables the quality of these habitats (which can be considered 
a proxy for the probability of species presence) to be predicted for the entire study 
area. This chapter addresses these types of models, referred to as “species distribu-
tion models” or “ecological niche models”. In particular, it describes one of the most 
commonly used models, called Maxent, as well as its application to mapping the 
primary vector of malaria in the Amazon region, Anopheles darlingi. This chapter also 
describes the innovative solutions proposed by the authors to minimise the impact of 
sampling bias on the results of such models.

 �Species distribution models
The construction of species distribution or ecological niche models is based on obser-
vational data, with the objective of spatially predicting the habitat quality of one or 
more species (animals or plants). These models establish a link between the docu-
mented distribution of species and the environmental data that characterise the 
habitats in which they have been observed (Guisan and Thuiller, 2005). The final output 
is a habitat quality map, which can be converted into a probability map  indicating the 
likelihood of the species in question occurring in a given area.

Since the 1990’s, the use of these models has steadily increased. They are used for 
different purposes:

 – to better characterise the environmental niches of species;
 – to predict the distribution and range shifts of invasive species;
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 – to evaluate the impact of climate change, land use, and land cover on species 
distribution;

 – to predict the distribution of rare species facing extinction, with a particular focus 
on providing support for conservation and reintroduction efforts for endangered 
species.
In particular, with regard to the prediction of vector mosquito distribution, Boosted 
Regression Trees, based on the principle of ensemble modelling and implementing 
regression trees, have been used to map the distribution of primary malaria vectors 
on the American continent (Sinka et al., 2010) and at a global scale (Sinka et al., 2012).
The environmental variables used as inputs provide information on the environmental 
conditions of the area of study. They are referred to as “explanatory variables”, “predic-
tors”, “covariables” or “inputs”. These are often derived from satellite images, aerial 
photography or data extrapolated from field observations. The environmental condi-
tions that they characterise may exert a direct or indirect influence on habitat quality, 
either positively or negatively (see Chapter 1).
A number of applications of species distribution models employ a set of variables, 
termed bioclimatic variables, derived from meteorological variables. These variables 
are intended to more accurately characterize the biological conditions associated 
with species habitats. A popular data source is the WorldClim database37. A set of 
variables such as this is useful for large-scale studies, as well as for predicting the 
medium- to long-term effects of climate change on the distribution of the species 
in question, but does not explicitly take into account land cover or land use. High 
resolution land cover and land use data, along with the resulting landscape variables, 
allow for an examination of the complex relationships between species presence and 
the landscape at a local scale—due to the lack of high spatial resolution data available 
at larger scales—, in addition to the explicit consideration of anthropogenic activities 
and their impacts. Conversely, the capacity to make predictions according to different 
global change scenarios is diminished.
In terms of species observation data, there are two main approaches. The first model 
is based on presence-absence data for species, and can implement a statistical 
approach for discrimination or supervised learning. The second model is based on 
presence-only data, involving specific approaches to compensate for the absence of 
“counter- examples” in the observations. The second approach has proven to be of 
particular interest, given that information regarding the absence of species is often 
unavailable or unreliable. The absence of a species in a given location may be due to:

 – non-detection of the species even though it is effectively present;
 – actual absence of the species in a suitable habitat, for reasons related to disper-

sion: the species has not yet colonised the environment, but will arrive sooner or later; 
ecological barriers preventing the species from accessing certain parts of the region;

 – actual absence of the species due to unsuitable ecological conditions.
Presence-only data may originate from different sources: historic databases and 
collections from universities, institutes, or museums; online databases dedicated to 
biodiversity (e.g., Global Biodiversity Information Facility – GBIF38) or to specific 

37. https://www.worldclim.org/data/index.html
38. https://www.gbif.org/

https://www.worldclim.org/data/index.html
https://www.gbif.org/


89

Data-driven models: mapping the spatial distribution of vectors

species, such as VectorBase39, which is dedicated to invertebrate vectors of human 
pathogens; field observations performed specifically for the study.

One of the most commonly used models which employs presence-only data is Maxent.

 �Maxent model
The Maxent model is based on the maximum entropy principle (Elith et al., 2011). In 
information science, entropy is a measure of information quantity and uncertainty. 
High information entropy is associated with varied and rich information content, 
better able to differentiate between different situations or objects to which the infor-
mation pertains. Maxent is a method for determining the probability distribution of 
a species’ occurrence across a given geographic region (i.e., all pixels within the area 
of study), where entropy is at a maximum and observational constraints have been 
satisfied. These constraints take into account the environmental conditions in which 
the species was actually observed. For each environmental variable, these constraints 
are expressed mathematically by the relationship between the expected value of the 
variable—associated with the probability distribution of occurrence of the species—
and the sample mean of the variable in sites where the species was actually observed 
(sites of occurrence). This model has been shown to give reliable results, even with a 
low number of observations (Hernandez et al., 2006).

The Maxent algorithm is available in the dismo package (Species Distribution 
 Modelling; Hijmans et al., 2017) of the R programming environment40.

 �Sampling bias and minimising its impact on modelling
Every analysis or model based on observations will be biased if the observations them-
selves were made in a biased manner and if no procedure was in place to, at minimum, 
identify the biases and, at best, minimise their impact.

If the default Maxent parameters are used, there is a random uniform sampling of a 
large number of “background” sites, assumed to represent the set of environmental 
conditions of the area of study (in our example, the territory of French Guiana) and 
their relative frequency. Such a configuration assumes that sampling (species counts) 
was carried out in a balanced manner, i.e., the various environmental conditions 
which exist were sampled proportionally relative to their frequency across the area 
in question. However, this is seldom the case, with counts being taken in areas which 
are accessible, most often in the vicinity of thoroughfares, and according to other 
criteria, explicit or otherwise. In the case of a vector mosquito species, sampling is 
often conducted primarily around confirmed cases of the disease.

We have therefore proposed a method to correct the sampling biases in models using 
presence-background data, which includes Maxent (Moua et al., 2020). The method 
is based on an initial estimate of the sampling effort (in this case, based on the counts 
of all mosquito species which were performed) within the domain of environmental 

39. https://vectorbase.org/vectorbase/app/
40. R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for  Statistical 
Computing, Vienna, Austria, https://www.R-project.org/.
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characteristics41. A random selection of background sites is then performed in this 
same domain, weighted by the previously estimated sampling effort. The method was 
evaluated using synthetic data, and in certain applications, it was found to be more 
effective than other debiasing approaches, particularly when applied to small datasets 
on sites of occurrence. The algorithm used to estimate sampling effort is written in 
pseudocode and evaluated by Yi et al. (2020).

 �Application to the primary malaria vector in French Guiana
Malaria around the world and in French Guiana
Malaria is a disease caused by a parasite of the genus Plasmodium and is transmitted 
by species of mosquitoes of the genus Anopheles. In 2020, the estimated number 
of malaria cases in the 85 countries where the disease is endemic (among which is 
France—French Guiana) was 241 million. The number of deaths worldwide was esti-
mated to be 627,000. The positive outcomes achieved in malaria control between 2000 
and 2015 have prompted the United Nations to set the objective of eliminating the 
disease in at least 35 countries by 2030 (SDG Target 3.3 and Global technical strategy 
for malaria). However, since 2015, the situation has deteriorated, as evidenced by the 
latest World Malaria Report, which recorded a 12% increase in deaths between 2019 
and 2020 (WHO, 2021).
French Guiana recorded an average of around 3,500 cases per year during the 2000’s. 
This number drastically decreased at the start of the 2010’s, subsequently stabilising 
at around a few hundred cases per year after 2013. However, major outbreaks were 
observed in 2017 and 2018 (Mosnier et al., 2020). Since 2019, the number of cases has 
once again decreased, and the objective of eradicating the disease within the French 
territory has been reaffirmed, notably in 2019 by Agnès Buzyn, then Minister for 
 Solidarity and Health, during the 6th replenishment conference of the Global Fund to 
Fight AIDS, Tuberculosis and Malaria.
The Global Technical Strategy for Malaria incorporates vector control and risk 
assessment to enhance the precision of intervention strategies and/or anticipate the 
potential for recurrence in regions where the disease has been eradicated. This is 
based, in part, on a more comprehensive understanding of the habitats that are condu-
cive to the proliferation of mosquitoes, their spatial distribution, and the probability of 
 occurrence of the vector species.

Anopheles darlingi, the primary malaria vector in French Guiana
Anopheles darlingi can be found in the rural areas of French Guiana. The species exhibits 
a preference for taking blood meals from humans (so called anthropophilic behaviour), 
both indoors and outdoors (exo-endophagic), and prefers outdoors resting sites with 
vegetation. It prioritises larval habitats that receive sunlight, but with enough shade 
to maintain a temperature between 20 and 28 °C (Hiwat and Bretas, 2011). The larvae 
of this species have been observed in bodies of clean and fresh water, with little to no 

41. In other words, it is an estimate of the density of sample sites (whether or not the species was observed) 
in a space defined by the set of variables describing the area of study’s environmental conditions, and not in 
a geographic space (latitude, longitude).
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current and some vegetation, such as riverbanks, creeks, pools formed near riverbeds 
left behind after flooding, wetlands, and flooded or flood-prone savannahs and forests 
(Hiwat et al., 2010; Rozendaal, 1987). Larval habitats are rarely located in dense forest 
due to the acidity of the water and the lack of sunlight under the forest canopy.
An. darlingi is present in low numbers across a range of environments, with an expan-
sive distribution. This species is also extremely difficult to raise in a laboratory setting. 
The combination of these factors presents a significant challenge in terms of capturing 
the species, which in turn makes it difficult to map its spatial distribution and study 
its bioecology. In this context, species distribution modelling—and models such as 
Maxent in particular—has proven to be particularly useful. The work described below 
was published in the Journal of Medical Entomology (Moua et al., 2017).

Anopheles darlingi presence-only data
A database of historical observations of the presence of Anopheles mosquitoes in French 
Guiana was constructed from the archives of the Institut Pasteur d’Algérie and Institut 
Pasteur de la Guyane (Pasteur Institutes of Algeria and French Guiana respectively), 
with activity reports from the DDAS (Directorate of Mosquito Control and Health 
Action) of the region of French Guiana, replaced by the DDAS of the territorial collec-
tivity of French Guiana, the Service de santé des armées (Defence Health Service), and 
publications from the ORSTOM (Office of Scientific and  Technical Research Overseas, 
later becoming the French National Research Institute for  Sustainable Development, 
IRD, in 1998). It is available via the Global Biodiversity Information Facility (GBIF) 
platform (Moua et al., 2019).
From this data, only the sites of occurrence of An. darlingi identified since 2000 were 
taken into account for the model. This approach was adopted in order to avoid consid-
ering sites which may have undergone significant change over time and for which 
information on the presence of the species could be called into question. A total of 
48 sites were identified, although some were located within the same 1 km2 pixel. 
Consequently, only 39 pixels were included in the Maxent input data set.
Nearly all of the sites in French Guiana with confirmed An. darlingi presence are located 
in coastal areas or along the two rivers forming the international borders, which are 
easy to access and are home to the vast majority of the population. This suggests that 
there is a significant sampling bias and justifies the use of the method described above 
which aims to minimise the impact of such biases on modelling results.

Environmental data
The selection of environmental data was based on the findings presented in the existing 
literature and the expertise of entomologists at the Institut Pasteur de la Guyane. 
From these sources, it has been shown that three major types of environments must 
be considered:

 – natural environments, for which the presence of An. darlingi depends on the value 
or class of the associated environmental variable (NAT_ENV);

 – environments associated with anthropic activities which do not permanently alter 
the local natural environment, and which exert a positive influence on the presence of 
An. darlingi (ANTHROP_NON_PERM);
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 – highly anthropized environments with long-term effects, corresponding to the 
presence of human activities which permanently alter the natural environments across 
a wide area and which limit the presence of An. darlingi (ANTHROP).

Each of these environments was characterised by a set of variables (see Table  6.1), 
most of which come from remotely sensed data with normalised spatial resolutions 
of 1 km.

Table 6.1. Environmental data selected to model suitable habitats for Anopheles darlingi 
in French Guiana. Source: Moua et al. (2017).

Variable Source data and remotely 
sensed data employed

Type of 
variable

Type of environment 
to which the variable 

primarily refers

Altitude Shuttle Radar Topography 
Mission (SRTM), NASA

Continuous 
numeric 
(quantitative)

NAT_ENV

Geomorphological 
landscapes

Geomorphological landscapes 
(Guitet et al., 2013)  
derived from the SRTM

Categorical 
(qualitative)

NAT_ENV

Geomorphological 
units

Categorical 
(qualitative)

NAT_ENV

Land cover Gond et al. (2011), using 
SPOT4/VEGETATION data

Categorical 
(qualitative)

NAT_ENV

Human activities 
and presence which 
do not permanently 
affect the local 
environment 
(HUMACT)

Human footprint  
(Thoisy de et al., 2010)

Ordinal 
categorical 
(semi-
quantitative)

ANTHROP_NON_PERM

Density of roads 
and tracks 
(ROADS)

BD TOPO®, IGN Continuous 
numeric 
(quantitative)

ANTHROP_NON_PERM

Percentage 
of urbanisation 
in the surroundings 
(URBAN)

Human footprint  
(Thoisy de et al., 2010)

Continuous 
numeric 
(quantitative)

ANTHROP

The full method of implementing Maxent for mapping An. darlingi habitats in French 
Guiana is shown in Figure 6.1.

Results
Figure 6.2 represents the habitat quality for An. darlingi. The probability of species 
presence is linked monotonically with habitat quality (as quality increases, so does the 
chance of the species being present).

The results show that habitat quality is strongly linked to human activities and pres-
ence, characterised by the variables HUMACT and ROADS, in particular along the 
coast, and in the centre and west of the territory, even though the thoroughfares in the 
latter two areas are essentially rivers and unpaved trails.



93

Data-driven models: mapping the spatial distribution of vectors

Fi
gu

re
 6

.1
. G

en
er

al
 m

et
ho

d 
fo

r q
ua

lit
at

iv
e 

m
ap

pi
ng

 o
f h

ab
ita

ts
 su

ita
bl

e 
fo

r A
no

ph
el

es
 d

ar
lin

gi
 in

 F
re

nc
h 

G
ui

an
a,

 m
in

im
isi

ng
 th

e 
im

pa
ct

s o
f s

am
pl

in
g 

bi
as

.



94

Remote Sensing and Spatial Modelling

The significant contribution of the length of roads and tracks (ROADS) to habitat quality 
appears to be consistent with the knowledge about the impact of environmental modifi-
cations and human activities: the construction of these routes and trails is accompanied 
by deforestation, potentially leading to new larval habitats (e.g., ditches) [Singer and 
Castro de, 2001], and bringing with it the sunlight required for larval development, as 
well as the presence of human hosts. However, it should be noted than above a certain 
threshold, around 7 km of roads/tracks per km2, habitat quality stops increasing and 
begins to decrease, implying that higher densities of road networks (characteristic of 
urbanisation in an area) lead to unfavourable environmental changes for An. darlingi 
(lack of vegetation for gravid females to rest, pollution of runoff water, etc.). Similarly, the 
phenomenon of urbanisation (characterised by the URBAN variable) is not favourable 
to An. darlingi (Stefani et al., 2013). This is particularly evident in the areas of Cayenne 
and Kourou. Conversely, Saint-Laurent-du-Maroni, one of the three largest urban areas 
in Guiana by size and level of urbanisation, alongside Cayenne and Kourou, appears to 
have an extremely high habitat quality, notably due to a lower estimated built-up density. 
However, Saint-Laurent-du-Maroni has undergone sustained demographic growth 
(+2.3% per year between 2013 and 2019 according to the French National Institute of 
Statistics and Economic Studies, INSEE42), meaning an update to the distribution map 
of suitable habitats for malaria vector mosquitoes is necessary, one which takes into 
account this recent expansion and higher built-up density.

Figure 6.2. Anopheles darlingi habitat quality in French Guiana.

42. https://www.insee.fr/fr/statistiques/6012651

https://www.insee.fr/fr/statistiques/6012651
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Human activities (HUMACT variable) are linked to habitats that are particularly 
conducive to the presence of An. darlingi in the central region of the territory. These 
habitats are primarily associated with mining activity. In 2014, the number of illegal 
gold mining operations in French Guiana was estimated to be around 700, with 
approximately 10,000 to 15,000 workers involved (Douine et al., 2016). This contrib-
utes to the maintenance of malaria in the region through a variety of mechanisms. 
Gold mining activities encourage the proliferation of An.  darlingi by creating gaps 
in the dense forest and semi-shaded pools of water which serve as potential larval 
habitats. These gold mining sites are frequented by a considerable number of people, 
who are highly exposed to mosquito bites due to their outdoor activities and poor 
living conditions, leading to situations where there is a high risk of local malaria trans-
mission. Furthermore, this population is highly mobile and receives little medical 
care, strongly contributing to the circulation of the parasite within populations of the 
region, encouraging the emergence and maintenance of transmission foci, promoting 
antimalarial drug resistance, etc. (Thoisy de et al., 2021; Douine et al., 2021).
It should also be noted that An. darlingi is not the only malaria vector present at gold 
mining sites. In particular, An. marajoara appears to significantly contribute to trans-
mission in highly anthropised forest environments such as mining sites (Pommier de 
Santi et al., 2016). All of the above make gold mining, and particularly illegal gold 
mining, one of the main factors in allowing the autochthonous transmission of malaria 
to persist, representing a significant obstacle to its eradication in the region.
Certain land cover categories are associated with high habitat quality. This is the case 
of “wooded savannah / dry forest”, which correspond to areas that are dry but regularly 
flooded, and are thus associated with the presence of potential larval habitats (Gond 
et al., 2011; Rosa-Freitas et al., 2007). The results are consistent with those of previous 
studies conducted along the coastal savannahs (Dusfour et al., 2013; Vezenegho et al., 
2015), which confirmed the presence of An. darlingi in this type of environment, at 
times in significant numbers.

 �Conclusion
This chapter has demonstrated that it is feasible to construct models based on pres-
ence-only species data and the environmental conditions in the observation sites. 
These models facilitate the prediction of habitat quality and, by extension, the prob-
ability of species presence throughout the entire area of study. Among these models, 
Maxent is one of the most popular, particularly due to its efficacy in the event of 
limited datasets on species presence. However, as is the case with all models, it is 
susceptible to sampling bias, particularly when the number of observation sites is 
limited. However, through the implementation of diverse approaches, including those 
proposed by the authors of this chapter, the impact of these biases can be minimised. 
The current trend in species distribution modelling is to use ensemble models, which 
consists of creating several species distribution models and combining the outputs to 
achieve the best results. An R library has been developed for this type of approach: 
biomod2 (Thuiller et al., 2022). However, any modelling approach requires an under-
standing of the parameters of the model and the capacity to adapt them to the context 
and objectives of the study, in order to obtain reliable and pertinent results. The use of 
multiple models may require considerable effort.
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In summary, mapping the spatial distribution of vector species is intended to guide 
vector control actions. However, it remains underutilised in this field, largely due 
to the absence of sufficiently fine-scale spatial resolution data and the inability to 
predict vector abundance. Proposed solutions to these shortcomings include the use 
of predictive, data-driven models on mosquito abundance. For example, Tran et al. 
(2020) present a model based on the support vector machine (SVM) approach using 
data on Aedes mosquito larval density in different municipalities on Reunion island. 
This model produced promising results, which can supplement those achieved by 
mechanistic modelling (see Chapter 8). Adde et al. (2016) successfully modelled the 
dynamics of An. darlingi density using mixed effects ordinal logistic regression in a 
municipality of French Guiana. However, such models are difficult to apply to large 
areas. They are particularly data intensive, and the collection of mosquito abundance 
data is especially challenging and costly to obtain (in terms of time, personnel, and 
financial resources), meaning it is rarely available. Furthermore, regularly trapping 
mosquitoes across vast territories is highly impractical (it should be noted, however, 
that mosquito trapping methods are becoming increasingly diverse, more efficient and 
less costly, which could lead to more robust and generalised models being developed). 
Lastly, one of reasons for the low adoption of species distribution modelling for malaria 
vector control is that vector distribution cannot be directly translated to transmission 
risk, let alone epidemic risk. The determination of these risks is contingent upon a 
number of additional factors pertaining to the vector (population abundance and age), 
as well as human presence and activities, the state of the health system, and individual 
human factors (behaviour, genetic predisposition, immunity, etc.).
In order to ensure the effective implementation of species distribution modelling in 
vector control and, more generally, to create action plans for vector-borne diseases, 
it is essential to provide a more detailed description of the advantages associated 
with each modelling approach. This enables a transition towards more integrated 
and systemic approaches, which allow for the consideration of different risk compo-
nents through the application of a formalistic approach and the utilisation of various 
modelling methods (knowledge-based, mechanistic, data-driven) and their respective 
advantages, contingent on the data and knowledge available.
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Chapter 7

Knowledge-based models: example of a multi-
criteria evaluation tool for public health

Fanjasoa Rakotomanana, Hobiniaina Anthonio Rakotoarison

In order to minimise the impact of a disease on individuals, it is essential that cases 
are managed effectively. However, the actions of public health stakeholders in both 
human and animal health, which aim to prevent the risk of disease spread, are crucial 
in reducing its impact at the population level. Infectious diseases affecting humans 
and animals emerge as a consequence of exposure to infectious agents present in their 
immediate or broader environment. These infectious agents, as well as their arthropod 
vectors (organisms that transmit the infectious agent), are themselves under the 
influence of environmental determinants whose parameters vary depending on the 
physical, chemical and climate conditions, in addition to the anthropogenic pressure 
exerted on their natural habitat. It is therefore essential to understand these factors in 
the epidemiology of such diseases and to monitor their evolution in order to detect 
environmental changes and assess the risks of an epidemic occurring.
In the event of an epidemic or pandemic, particularly when an unknown pathogen 
emerges, the use of models has become standard practice in public health. Descrip-
tive models of a health phenomenon are commonplace, particularly as they allow the 
prediction of disease incidence and prevalence. However, these models can also be 
used to understand transmission mechanisms, or to predict the scale of the epidemic 
or the impact of control measures (Dubois, 2005). Models provide information that 
helps estimate of the technical and financial resources required to address a poten-
tially critical public health situation. They play an essential role in decision-making. 
It  is also crucial to incorporate a spatial dimension into models to gain insight into 
the initial stages of an epidemic. The oldest thematic distribution map of cholera 
cases in London in 1854 demonstrated that integrating spatial data in an explana-
tory epidemio logical approach facilitated the understanding of disease transmission 
 mechanism and enable the epidemic to be controlled (Snow, 1855).
A large number of models are based on data analysis (see Chapter 6). Furthermore, 
initiatives and data management and collection platforms are in place at the global 
or continental level, with the creation of reporting systems for epidemic-prone 
diseases. However, several constraints affect the acquisition of comprehensive and 
reliable data, both in terms of spatial and temporal coverage, which are essential for 
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fully addressing the issue. For example, since 2019, Madagascar’s Ministry of Public 
Health has relied on the DHIS243 platform, a health management information system 
(HMIS) used by more than 100 countries worldwide. In 2021, the promptness and 
completeness of data reporting remained below 80% for the  malaria-specific inte-
grated national surveillance system, which represents a significant weakness in the 
management and response to malaria epidemics (NMCP, 2021). Additionaly, data on 
environmental risk factors is often lacking in countries with limited resources, such 
as Madagascar. This is also the case at the global level during the emergence of new 
pathogens. This data is vital for implementing strategies to control  epidemic-prone 
diseases such as malaria (WHO, 2001).

This chapter addresses knowledge-based models, which can be employed in the 
absence of epidemiological data, with geographic information system (GIS)-based 
multi-criteria analysis given as an example. This method helps overcome the need for 
large epidemiological datasets required to develop data-driven models (see Chapter 6). 
This chapters provides an example of a knowledge-based model used to identify areas, 
which are priorities for the malaria vector control campaign in Madagascar. Finally, 
this chapter discusses Full MCE for Public Health, a tool developed at the Institut 
Pasteur de Madagascar (IPM), which enables this method to be  implemented via a 
plug-in for the GIS software QGIS.

 �GIS-based multi-criteria analysis,  
a knowledge-based approach
GIS software is designed to manage multi-source environmental data and provide a 
decision-making tool. The use of multi-criteria analysis (MCA) in conjunction with 
a GIS is becoming increasingly prevalent across a range of disciplines. It is based on 
expert knowledge. Several examples have shown that MCA combined with GIS, also 
known as spatialised multi-criteria analysis (SMCA), is an highly effective tool for 
addressing issues in human and animal health. For example, Bell et al. (2007) devel-
oped deprivation indices, which are indicators related to the health of populations, 
providing socio-economic gradients to decision-makers based on a SMCA approach. 
In the absence of precise data on the foci of African swine fever (ASF), SMCA allowed 
ASF transmission risks to be mapped in Africa and Madagascar, compensating for 
the lack of quantitative data on the epidemiology of the disease in Africa (Glanville de 
et al., 2014). Knowledge-based models have also been used to map areas conducive to 
the amplification and spread of Rift Valley fever (RVF) in four East African countries: 
Kenya, Tanzania, Uganda and Ethiopia (Tran et al., 2016).

SMCA consists of five main steps, which are considered the building blocks of spatial 
decision-making:

1. Defining the risk to be mapped (e.g., risk of introduction, amplification, spread, etc.) 
and the area concerned, depending on the objective, which requires making one or 
more decisions. A comprehensive understanding of the risks allows the identification 
of factors to be considered in the subsequent phase.

43. https://dhis2.org/fr/about/

https://dhis2.org/fr/about/
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2. Identifying the criteria for analysis: the data to be used as factors will be identi-
fied with the help of expert opinions and collected from various sources (national 
geographic institutes or other geoportals). The criteria can be divided into two 
types: constraints (a mask limiting the areas to be considered) and factors (criteria 
defining a certain degree of suitability for a given area) [Rakotoarison et al., 2020; 
Rakotomanana et al., 2007]. The factors (e.g., temperature, which influences mosquito 
population dynamics and the biological life cycle of plasmodium in mosquitoes) and 
constraints (e.g., inhabited areas, target areas for vector control intervention: there is 
no point in predicting risk outside of these areas) are then processed and combined in 
a different way. Experts such as epidemiologists, entomologists, climatologists, ecolo-
gists or specialist in human or animal health are involved in this stage to help identify 
the criteria. Their opinions are supported by literature reviews resulting from prior 
biblio graphic research. Remote sensing data is a particularly useful source for acuiring 
spatially explicit data on climate and environmental factors or constraints. The use of 
satellite data to understand the various types of land cover and their change over time 
has become the most valuable GIS application for obtaining the up-to-date data on a 
study area (see Chapter 1).

3. Standardising factors: this consists of transforming the original evaluation factors 
into comparable units in order to obtain suitability values for an event (e.g., suit-
ability of the occurrence of a disease) expressed on a continuous scale (depending 
on the choice from 0 to 1, or 0 to 255). A value of zero corresponds to no suitability, 
whereas a value of 1 or 255 (depending on the choice of scale) represents maximum 
suitability for the event being studied. Standardisation can be done using  thresholds 
(above or below which, the risk is present or absent) or based on fuzzy logic, the 
most common approach used in multi-criteria decision analysis. This technique 
allows for a gradual transition between factors suitable for risk prediction and those 
unsuitable, depending on the relationship between the factor and the risk (increasing, 
decreasing, symmetrical, etc.). Figure 7.1 shows two  examples of relational functions 
for the factors and risks to be evaluated.

Figure 7.1. Examples of membership functions for standardisation of factors: (a) increasing 
function; (b) symmetrical function with plateau.

4. Factor weighting: this step consists of assigning a weight (between 0 and 1) to each 
factor according to its importance relative to the other factors considered. The closer 
the weight is to 1, the greater the contribution of the factor to the event. Several 
methods, including pairwise comparison, have been proposed to weight factors 

Knowledge-based models: example of a multi-criteria evaluation tool for public 
health
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depending on the context. The pairwise comparison method was developed by Saaty 
as part of the analytic hierarchy process (AHP) [Saaty, 1977]. This method is based 
on the creation of a matrix wherein the factors are evaluated in pairs through the 
assignment of scores based on a comparative scale (Table  7.1) Using this matrix, 
the AHP method allows a weight to be calculated for each factor. However, pairwise 
 comparison may result in inconsistent relationships. These inconsistencies can be 
measured by calculating a consistency ratio (CR). Pairwise comparisons with CR < 0.1 
are considered consistent, while a CR ≥ 0.1 indicates inconsistent judgements, which 
should be re-evaluated.

Table 7.1. Example of a comparison scale for two risk factors.
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5. The final step involves combining risk indices (standardised and weighted factors) 
and integrating them into a GIS in order to produce a risk map. The resulting map 
indicates the level of risk per basic geographic unit. If  a continuous scale is used, 
ranging from 0 to 255, a value of 0 indicates a low risk, whereas a value of 255 indicates 
a high risk. The varying weights assigned according to the opinions and estimates of 
experts allow uncertainty to be predicted at the level of the geographic unit in ques-
tion. An uncertainty map may be combined with a risk map. The model is considered 
stable if it does not vary significantly, regardless of the variation in weights assigned 
to the factors by different experts. The risk map can be validated depending on the 
 availability of epidemiological data.

 �Example of this method used to map the risk of malaria 
in the Malagasy Central Highlands
Context
Malaria control remains a global challenge in public health, with significant economic 
implications. The 2030 target for malaria control is to reduce the incidence and 
mortality rates of malaria by at least 90% globally compared to 2015 levels. In 2019, 
there were an estimated 227 million malaria cases across 85 malaria-endemic coun-
tries; this figure increased by 14 million in 2020 to reach 241 million (WHO, 2021). 
For   countries with limited resources, combating this scourge primarily relies on 
support from financial partners through the global fund to fight major epidemics, such 
as malaria, AIDS and tuberculosis (NMCP, 2017; WHO/GMP, 2021). In  Madagascar, 
malaria ranks as the fourth leading cause of morbidity in health centres and  in- hospital 
mortality (NMCP, 2017). Malaria is characterised depending by four distinct patterns, 
which vary depending on the duration and intensity of  transmission: East, West, 
 Semi-arid and Malagasy Central Highlands (MCH).
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Application of the SMCA method to the Full MCE for Public Health tool
Rakotoarison et al. (2020) applied the SMCA method to the Malagasy Central 
 Highlands to identify areas, which are priorities for indoor residual spraying (IRS) 
campaigns. The model was developed with the Full MCE for Public Health tool.
For users who are not specialists in geomatics, the IPM created a plugin for the 
open-source software QGIS, providing stakeholders in the health sector with an 
interactive and semi-automated tool. The Full MCE for Public Health plugin was 
developed using Python 2 for QGIS version 2.x and features a user-friendly inter-
face44 (Figure 7.2). Training was provided to human and animal health workers by 
the IPM team at both the national and international levels, aimed at improving their 
proficiency with the tool.
The steps of the SMCA method described in the previous paragraph are outlined 
below, along with illustrations of the Full MCE for Public Health interface.

Figure 7.2. Welcome screen of the Full MCE for Public Health plugin in QGIS 2.x.

1. Definition of risks and priority areas 
Firstly, the MCHs were identified as a priority area, as this region is prone to epidemics 
of unstable malaria. Malaria vector control is based on IRS campaigns. Areas of inter-
vention are selected according to the available means of control. By mapping the areas 
at the highest risk, it is possible to target them with greater precision.

2. Identification of criteria
In collaboration with medical entomology specialists, stakeholders in the national 
malaria control programme (NMCP), and other local experts, various criteria influ-
encing the risk of malaria transmission in the MCH were identified. This step draws 
on knowledge of malaria in general, and the MCH in particular.
Chapter 1 discussed the role of the environment in the transmission of mosquito-borne 
disease and the benefits of using remote sensing. In this case of malaria in the MCH, 
rice fields represent the larval habitats of choice for Anopheles funestus mosquitoes, 
which are the primary vectors in this region. For various reasons (changes in rainfall, 
potential for irrigation, insecurity), crop cover may vary from one year to the next. 
Between crop cycles, a rice field may be drained or remain underwater depending on 
the irrigation system. Occasionally, these agricultural plots are used for an entirely 

44. https://github.com/SaGEOTeam/FullMCE

https://github.com/SaGEOTeam/FullMCE
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Figure 7.3. Input data and data flow diagram to obtain malaria risk maps for the Malagasy 
Central Highlands. Adapted from Rakotoarison et al. (2020).

Figure 7.4. Illustration of the Full MCE for Public Health plugin showing the integration of (a) 
constraints, and (b) factors to be considered in the GIS-based multi-criteria analysis.
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different purpose, with the topsoil being harvested for the manufacture of bricks. 
The water-filled holes left behind after these anthropic activities may also serve as 
ideal larval habitats for malaria vector mosquitoes. Furthermore, a reduction in rice 
crop cover encourages the proliferation of other vector species, such as An. gambiae, 
in natural environments. Wetlands represent potential larval habitats for anopheles 
malaria vectors, and thus one of the main criteria chosen for SMCA. Remote sensing 
(Landsat images) allows for the annual mapping of rice fields and natural wetlands 
(Rakotoarison et al., 2020).
Altitude, temperature, precipitation, human population density (which can affect 
larval habitat distribution), and inhabited areas (targets of IRS) were also selected as 
criteria (Figure 7.3) (Rakotoarison et al., 2020).
Pre-processing (e.g., satellite image classification) is required to prepare the corre-
sponding data for analysis (Figure 7.3). The interface of the Full MCE for Public Health 
plugin allows these various criteria to be integrated as either constraints or factors, in 
raster format (Figure 7.4).

3. Standardisation
The plugin's interface then allows the factors to be standardised. In accordance with 
expert opinions, the parameters can be defined for the type of standardisation func-
tions to be used (linear, sigmoid, etc.), their rate of change (increasing, decreasing, 
symmetrical), and the thresholds to be applied (Figure 7.5a).

4. Factor weighting
In the weighting step, the user compares different factors in pairs. Values for the 
pairwise comparison matrix (Table  7.1) can be easily entered via the interface 
(Figure 7.5b). The weight assigned to each factor is automatically calculated using the 
AHP method and a summary is provided on the final screen (Figure 7.6).

Figure 7.5a. Illustration of the Full MCE for Public Health plugin showing the steps for 
standardisation.
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In the study conducted by Rakotoarison et al. (2020), population density was consid-
ered the most important factor by the experts, with the highest weight assigned by 
the AHP method (weight: 0.50). This was followed by the distance to rice fields and 
wetlands (as the distance increases, the risk decreases; weight: 0.18), then temperature 
(weight: 0.17), altitude (weight: 0.09) and precipitation (weight: 0.06).

Figure 7.5b. Illustration of the Full MCE for Public Health plugin showing the steps for 
generation of the pairwise comparison matrix for weighting factors.

Figure 7.6. Malaria risk maps in the Malagasy Central Highlands Adapted from Rakotoarison 
et al. (2020).
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5. Combination of risk indices
Finally, the standardised and weighted factors (population density, distance to 
wetlands, temperature, altitude, precipitation), as well as the constraints (inhabited 
areas, altitude, population density), are combined to obtain risk maps for IRS priori-
tisation for different years (2014, 2015 and 2016) by updating land cover, temperature 
and precipitation maps on an annual basis. The identified areas of risk were classified 
according to a gradient ranging from very low to very high, highlighting the significant 
spatial and interannual variations in transmission risk (Figure 7.6).

 �Conclusion
The influence of geographic location and the role of the environment in disease distri-
bution are long-established concepts in the field of health. The use of satellite data to 
gain insight into the different types of land cover and their change over time is essen-
tial for obtaining up-to-date data and updating risk maps. Knowledge-based models 
promote a collaborative approach, whereby experts are involved in evaluating potential 
risks. The tool was developed based on this method and is freely available. It can be used 
in other fields, such as agriculture, environmental protection, or land use planning.
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Chapter 8

Arbocarto: a mechanistic model based  
on the life cycle of Aedes mosquitoes

Renaud Marti, Marie Demarchi, Mathieu Castets, Annelise Tran

Due to the nature of their design, process-based models, also termed “mechanistic 
models”, are explanatory models focused on the causality of relationships between 
inputs and outputs (Craver, 2006). This type of approach requires the explicit delinea-
tion of causal relationships (e.g., the effect of temperature on mosquito development) 
in a modelling framework (see Introduction to Part 2), usually in mathematical form 
(e.g., an equation expressing development rate as a function of temperature), based on 
previously established knowledge (from observational or experimental studies) about 
the system being modelled.
Depending on the goals of the model, this approach also requires a mandatory and 
sometimes difficult step of simplification. This step, undertaken at the discretion of 
the modellers and based on their understanding of the significance of the processes 
to be considered, enables them to develop parcimonious models. In addition, an 
explanation of the processes through a mechanistic approach enables an in silico 
simulation of scenarios (e.g., impact of insecticide treatment using different proto-
cols to control mosquito populations) and, through their analysis, identification 
of the control points for the system in question. Experimental studies would be 
 comparatively difficult and costly to perform.
Since the advent of big data, the interest of such approaches combined with the 
understanding, exploitation and validation of explanatory mechanisms is at times 
questionable, especially when considering the hegemony of data-driven approaches 
(see Chapter  2), and the predictive and sometimes spectacular power of machine 
learning methods (Baker et al., 2018). However, both of these approaches provide 
complementary information (Tran et al., 2020), and their integration can yield  valuable 
insights (Baker et al., 2018).
In this chapter, we present an example of a mechanistic model transformed into a soft-
ware tool in the context of entomological surveillance and vector control against Aedes 
mosquitoes, based on an explicit description of the mosquito life cycle. This tool was 
developed in the framework of the Arbocarto45 project, which looks at how to consol-
idate the surveillance and control strategies used by vector control services in different 

45. https://www.arbocarto.fr/en

https://www.arbocarto.fr/en
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regions of France. The model bearing the same name is a predictive mapping tool for 
population densities of Aedes mosquitoes, designed with a spatial scale suitable for use 
by surveillance and control organisations, and based on weather data (daily rainfall 
and temperatures) and high to very high spatial resolution remote sensing products.

 �A generic model built around the mosquito life cycle
The life cycle of mosquitoes is uniform across species, commencing with an imma-
ture aquatic phase, which is subdivided into three principal developmental stages: egg, 
larva, and pupa. A rapid emergence phase ending in the adult form marks the transi-
tion to the aerial stage, during which mosquitoes will alternate between reproductive, 
feeding, resting and dispersal behaviours until death (see Chapter 1). This develop-
ment, which takes the form of a complete metamorphosis (holometabolous insect), 
allows for the biological cycle of mosquitoes to be interpreted as a compartmental 
model (Cailly et al., 2012). Each stage of the cycle is assigned a “box” (or “compart-
ment”) into which all of the mosquitoes sharing the same morphological state and 
similar behaviours are placed (e.g., “Pupae”). The boxes are connected by arrows which 
mark the transitions between different stages (Figure 8.1).
The demographic changes associated with each compartment can be described by a 
system of ordinary differential equations (ODE). In the generic model of mosquito 
population developed by Cailly et al. (2012), an ODE system then allows each of the 
10 population stages to be expressed over time, in the form of the same number of basic 
demographic groups: 3  aquatic stages (E eggs, L larvae, P pupae), 1  emerging adult 
stage (Aem), 3 nulliparous stages (A1h, A1g, A1o) and 3 parous stages (A2h, A2g, A2o), 
with adult females subdivided according to their behaviour during the gonotrophic 
cycle (h: host-seeking, g: transition from engorged to gravid, o: oviposition site seeking). 
The variation in the number of mosquitoes in a given stage (e.g., “Larvae”) over a defined 
period of time (1 day in this example) is then expressed by adding the fraction of the 
population originating from the previous compartment (e.g., “Eggs”) and subtracting 
the fraction of the population progressing to the next compartment (e.g., “Pupae”) 
and assigning a mortality rate (Figure 8.1). To quantity the flow of individuals from 
one compartment to the next, this model uses parameters which are considered to be 
stable over time (e.g., the number of eggs laid) and functions which vary according to 
meteorological conditions such as rainfall or temperature (e.g., mortality rates or tran-
sition rates to the next stage) [Cailly et al., 2012]. This approach (Figure 8.1) permits 
the aggregation of data regarding the influence of meteorological and environmental 
variables on mosquito population dynamics, facilitating the adaptation of a generic 
model to a specific species or geographic area (Ezanno et al., 2015).
As previously outlined, certain simplifications have been incorporated into this model, 
with the objective of prioritising the inclusion of specific biological mechanisms over 
others that are considered to be of secondary importance. Due to their nuisance 
capacity and/or their epidemiological significance in relation to blood-feeding (bites), 
this model prioritises the representation of the abundance of adult (female) mosqui-
toes capable of taking a blood meal (host-seeking female adults, sum of A1h and A2h) 
and transmitting a pathogen after a first infected bite (A2h). Furthermore, the prin-
cipal stages of the mosquito life cycle were retained to facilitate simulations of the 
impact of a control measure on a specific stage of the cycle.
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Conversely, some processes are not represented:
 – male mosquito compartments (due to the male not biting); however, this compart-

ment should be added to test the impact of control measures such as the sterile insect 
technique (SIT), which consists of releasing sterile male mosquitoes for the purposes 
of population control (Haramboure et al., 2020);

 – the movement of mosquitoes (which remains limited to the expression of the 
mortality rate for females in search in a host or egg-laying site, conveying the risk 
associated with flight, biting and egg-laying); this model thus does not permit the 
simulation of mosquito dispersion.

 �Adaptation of the model to the species Aedes albopictus and 
Aedes aegypti and spatialization
Modelling the abundance of Ae. albopictus and Ae. aegypti mosquitoes represents a 
significant area of interest within the context of vector control. Globally, these two 
species are the primary vectors of dengue, chikungunya and Zika viruses. In France, 
Ae.  albopictus is notably present in the Indian Ocean (La Réunion and Mayotte) 
and in numerous departments in metropolitan France, while Ae.  aegypti has been 
observed in the Antilles, French Guiana and in the Indian Ocean. In the event that 
a user wishes to simulate the abundance dynamics of one of these species within a 

Figure 8.1. Schematic diagram of the life cycle of mosquitoes using a compartmental model. 
Adapted from Cailly et al. (2012).
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particular  biogeographical context, it is necessary to adapt the model presented in the 
preceding section, which is based on the generic mosquito life cycle. This adaptation 
is achieved by selecting values for the various parameters of the model and transition 
functions between the different life cycle stages (Ezanno et al., 2015), in addition to the 
 spatialization of the model.

Choice of parameters and functions for modelling  
mosquito population dynamics
This step requires a targeted literature review of the species and the environmental 
context (Ezanno et al., 2015) to ascertain which publications explicitly reference 
the parameters under consideration (e.g., Delatte et al., 2009, or Lacour et al., 2010, 
for Aedes). Transition functions between stages can typically be derived from the 
outcomes of in vitro experimental studies, with rigorous control of the influential 
parameters (temperature, pressure, humidity) and by varying a single parameter at 
a time (Delatte et al., 2009; Lacour et al., 2010). A biostatistical relationship can then 
be established, thereby characterising the dynamics of the transition. In the absence 
of data on specific parameters or functions, consultations with medical entomologists 
and field observations by vector control services can be instrumental in estimating 
these parameters by taking into account the environmental context of the region 
(e.g., date on which Ae. albopictus exits diapause in temperate regions).
The set of parameters (constants of the model) and functions used to model 
Ae.  albopictus (in temperate and tropical environments) and Ae.  aegypti popula-
tion dynamics are discussed in the publications of Focks et al. (1993) and Tran et al. 
(2013, 2020). For the same species (e.g., Ae.  albopictus in a tropical environment), 
these parameters and functions can be reused in a different geographical context. 
This approach was used for experimental data obtained for the species Ae.  albopictus 
on Reunion island (Delatte et al., 2009), which allowed the population dynamics of the 
Asian tiger mosquito to be modelled on this island (Tran et al., 2020), as well as on the 
neighbouring island of Mauritius (Iyaloo et al., 2021).

Spatialization of the model: the concept of environmental 
carrying capacity
In addition to the temporal dynamics that are subject to meteorological variations, 
the spatial variations in mosquito population abundance between different regions 
or within the same region are constrained by the distribution of available resources, 
particularly the density of potential egg-laying and larval development habitats. In the 
case of Ae. aegypti and Ae. albopictus, the size of these habitats is typically small (plant 
pot saucers, tyres, cavities, etc.) and must be filled with water in the short, medium, 
or even long term. This is due to the high desiccation resistance of Aedes eggs, as 
discussed in Chapter 5. This process of filling with water, which may be attributed to 
either a natural phenomenon (rainfall) or an artificial intervention (watering), trig-
gers the hatching of mature eggs and the subsequent progression to the larval stage 
(see Chapter 1). If we consider an area several hectares in size, the density of larval habi-
tats may be aggregated in the form of a single average value for the area, representative 
of the “environmental carrying capacity”. This definition has its roots in the constant K 
in foundational ecology, which is linked to the logistic equation model (Verhulst, 1845). 
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It expresses a term of density-dependent mortality, which is applicable in this case to 
the larval stage and the emergence of an adult mosquito. This carrying capacity K is an 
important parameter and represents the maximum number of larvae that the environ-
ment can support without affecting the population itself. It therefore directly depends 
on the number of available larval habitats in a given area and the average production 
associated with each habitat (e.g., 10 larvae per habitat).
The characteristics and density of these habitats can vary significantly between regions, 
contingent on the nature of the environment (presence or absence of vegetation, 
woodland, etc.) and the usage and behaviour of human populations (water storage, 
plant watering, waste storage, etc.). Accordingly, the model must enable the user to 
set the carrying capacity of the environment based on field observations (Tran et al., 
2020) or estimates derived from information extracted from remotely sensed images, 
including land cover, vegetation, and the type of built-up area (see Chapter  5), in 
addition to external data such as the location of abandoned houses, graveyards, etc. 
Due to the type of larval habitats used by Ae.  albopictus and Ae.  aegypti mosqui-
toes, the environmental carrying capacity is split into two terms, Klfix and Klvar, 
depending on the origin of the water filling the site: Klfix for sites watered by humans 
(considered “fixed”, i.e., does not vary over time) or Klvar for sites watered by rainfall 
(considered naturally variable).

 � Implementation, initialisation and simulation  
of Aedes mosquito abundance
Implementation using the Ocelet modelling language
In order to simulate the abundance of mosquitoes in a given area associated with one of 
the Aedes species described, the model is implemented in a computing environment. 
Implementation consists of defining and writing the code and programming variables 
that facilitate the automation of all calculations for simulating mosquito population 
dynamics for each plot under consideration. In spatial modelling, the Ocelet plat-
form offers a suitable conceptual and practical framework that can be leveraged to 
gain valuable insights (Degenne and Lo Seen, 2016). This platform offers a business 
language that is both generic and precise for the description of dynamic phenomena 
in a landscape based on the concept of interaction graphs. It also provides a set of tools 
that enable the identification of relationships between geographic features that are 
compatible with geographic information systems (GIS).
In Ocelet, a system is represented by defining “entities”, which may have different 
spatial representations (polygons, points, etc.). The system dynamics are simulated 
using a “scenario”, in which the state of the entities will change over time via the appli-
cation of functions. These functions may be specific to a given entity type (“services”) 
or dependent on other entities with which they interact (“relations”) [Degenne and 
Lo Seen, 2016].
The inputs of the model are as follows (Figure 8.2a):

 – the location of weather stations (shapefile geographic format);
 – the daily rainfall and maximum and minimum temperatures (text format). As previ-

ously indicated (Figure 8.1), these variables will impact the transition rates between 
stages as well as mortality rates;
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 – an “environmental file” (shapefile format), which includes the location of the plots 
for which the densities of each stage will be estimated. These plots are characterised by 
their altitude and environmental carrying capacity (denoted K, see previous section).

Figure 8.2. Functional diagram of the Arbocarto.
(a) Input data required to begin a simulation, (b) integrated biological model (Figure 8.1), (c, d) optional 
imput data, (e) interface (Figure 8.4), and (f ) output generated.

Each plot is considered independent from one another and, for each step in time:
 – the temperature and rainfall values for each weather station are read and assigned 

to each corresponding plot (the closest station);
 – the functions of the models are updated for each plot;
 – the ODE system (Figure 8.2b) is resolved for each plot allowing for an estimation 

of number of individuals in each stage (E, L, P, Aem, A1h, A1g, A1o, A2h, A2g, A2o). 

For each plot of the “environmental file”, the model outputs (Figure 8.2f ) the number 
of individuals in each stage at each step of time. It is important to note that the model 
predicts mosquito densities for the day corresponding to the last date of meteoro-
logical data, and does not predict future densities. However, the prediction of aquatic 
stage densities (P and L) allows adult densities to be estimated for a few days.

Initialisation and example of simulations
The initialisation phase is carried out as follows: arbitrary assignment of a large 
number of eggs (e.g., 1,000,000) for each constituent plot of the area in question and 
null values for all the other stages. An embargo period of at least one year is allowed to 
pass in the simulation (the first year results of the simulation are not used, but serve to 
initialise mosquito population dynamics in a more realistic manner). This phase reit-
erates a crucial point previously highlighted in the simplifications made in Section 2. 
The model has been constructed to reflect the dynamics of an established mosquito 
population, once the colonisation process has stabilised at the specific site in question.



115

Arbocarto: a mechanistic model based on the life cycle of Aedes mosquitoes

The simulation is based on the calculation of abundance for a specific time step, 
with a minimum duration of one day and a typical duration of one week. The length 
of the simulated period is dependent on the availability of meteorological data and 
the implementation or absence of control measures against mosquito populations. 
The  advantages of a mechanistic approach are exemplified by the simplicity with 
which the majority of vector control measures can be implemented:

 – the destruction of habitats is modelled by a decrease in the environmental carrying 
capacity for the plot(s) in question:

 – the use of larvicides or adulticides (fumigation) is equivalent to temporarily 
increasing the mortality rate of the targeted stage: larvae or adults.
The model permits the execution of multiple consecutive simulations (with or without 
control measures) and the evaluation of the potential impact of a single measure 
or an integrated control strategy (combining multiple measures) through in silico 
 experimentation (Figure 8.3).

Model validation
A comparison between the simulation data (driven by daily temperature and rain-
fall values measured by the corresponding weather stations) and entomological data 
collected in the field allowed the model outputs to be validated for several test sites 
in temperate and tropical environments (Iyaloo et al., 2021; Tran et al., 2013, 2020).
This step allows the validity of model outputs to be verified prior to their utilisation for 
predictive purposes or for the evaluation of the impact of different control scenarios.

 �Arbocarto: a specialised interface for vector control measures
This model, based on the mosquito’s life cycle, considers both the fluctuations in 
meteorological data (temperature and rainfall) that drive the temporal dynamics of 
the model and the suitability of the environment in terms of larval habitat density. 
This allows for the provision of a spatialization that is consistent at the landscape scale 
(most often surface areas in the order of several hectares).
The utilisation of the Ocelet platform allows simulations to be quickly launched in 
a scientific context. However, in order to reach the greatest number of users, it is 
essential that the model can be utilised by individuals lacking any specialised IT 
knowledge. The Ocelet tool allows an executable file (JAR format) to be exported 
in a Java runtime environment (JRE). Nevertheless, it is still feasible to access a 
comprehensive array of variables for the model, including the choice of species, the 
period and location of the simulation, as well as the incorporation of black spots 
observed in the field (high density of larval habitats) or vector control measures. 
To this end, an interface developed in JavaFx46 affords comprehensive control of the 
model, its initialisation, and the simulation phase, all of which can be accomplished 
in a few clicks (Figure 8.4).
Additionally, the user is able to modify the initial environmental file in accordance 
with the specific characteristics of the land cover or vegetation, or by incorporating 
one or more supplementary layers of geographic information, including the location 

46. https://openjfx.io/

https://openjfx.io/
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of potential larval habitat sites (graveyards, garages, home gardens, terrace gardens, 
abandoned houses, etc.; Figure 8.2f ); the addition of this information modifies the 
environmental carrying capacity of each plot in question.
The interface is divided into three main sections (Figure 8.4): on the left is the menu 
with the various modules to be enabled; in the middle are the parameters to be set for 
each module; at the bottom, warning messages or information is shown to ensure the 
simulation proceeds smoothly.
A text file is generated for each output produced by the application, in which the 
parameters selected by the user to generate this output are listed.

Figure 8.4. Screenshot of the Arbocarto interface for controlling the settings of the population 
dynamics model for Aedes albopictus and Aedes aegypti mosquitoes.
The model is controlled via specific modules for initialisation and simulation, thereby enabling vector 
control measures and entomological observations in the field to be taken into account.

In order to facilitate user proficiency with the tool, training has been provided. The 
Arbocarto tool is now entering its final phase, namely its operational deployment and 
routine use in organisations and frameworks responsible for surveillance and vector 
control, including interdepartmental agreements for mosquito control (EID, ententes 
inter-départementales pour la démoustication), regional health agencies (ARS, 
agences régionales de santé) and local authorities. These structures will employ this 
tool in addition to their prospecting efforts, awareness campaigns, and vector control 
measures in the event of an epidemic. The project has a dedicated website47 providing 
information on its current initiatives and ways to access the application under the 
CeCILL-C free software licence.

47. www.arbocarto.fr/en

http://www.arbocarto.fr/en
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Chapter 9

Spatial simulation of the risk  
of dengue transmission using vector  

and host behavioural models
Éric Daudé, Sébastien Rey-Coyrehourcq, Alexandre Cebeillac

Arthropod-borne diseases, including dengue, chikungunya and those transmitted 
by the Zika virus, represent a significant threat to public health when they reach 
epidemic levels. At the global level, the occurrence of epidemics is linked with climatic 
parameters (temperature and rainfall) and urbanisation. However, understanding 
the transmission dynamics of these epidemics remains a significant challenge at 
the suburban level. In essence, at this scale, the heterogeneity of the environment, 
spatio-temporal variations in vector density and human population mobility make 
the geography of the disease and its spread particularly complex. Efforts to control 
the spread of these diseases primarily target their vectors, predominately the urban 
mosquito Aedes aegypti. However, these efforts are undermined by the vast expanse of 
the areas in question, the difficulty in reaching the locations where the mosquitoes or 
their egg-laying sites are potentially located, and the financial and personnel resources 
that are required. Despite the efficacy of the control strategies developed in the 1960s, 
which included the intensive use of insecticides such as DDT, these strategies have 
since become partially ineffective. However, an understanding of the pathogen system 
and technological advances has enabled the development of targeted control strate-
gies, which are focused on vector mosquitoes, particularly in the absence of a vaccine 
(Hoffmann et al., 2011; Seixas et al., 2019). However, the identification of target areas 
for vector control in large metropolitan areas remains a major challenge.
In spatial epidemiology, one of the most frequently proposed hypotheses is that 
specific locations have the potential to become hyper-localised contamination 
hotspots, responsible for the multiplication of cases and the amplification of the virus. 
From these locations, as a result of human mobility, other locations contribute to 
viral propagation at a larger scale, acting as dispersal nodes that favour the spread of 
 pathogens in urban environments (Daudé et al., 2015). How are these locations iden-
tified? Do  they have any special socio-environmental characteristics? How do they 
change over time and what are the impacts on epidemiological dynamics?
At the scale of a large city with several million inhabitants, the identification of 
these locations could permit the implementation of more targeted and less  intrusive 



120

Remote Sensing and Spatial Modelling

control measures, thereby reducing the number of epidemic foci, reducing the 
burden on healthcare services in times of an epidemic and reducing the economic 
burden  for  individuals and authorities. Exploring the relative weight of these 
factors—local outbreaks vs spread via human mobility—in the overall dynamics 
of an epidemic is a challenging undertaking. This is due to the non-linear relation-
ships that exist between these factors and the difficulties encountered in accessing 
or collecting relevant data to evaluate these different mechanisms. Spatial modelling 
is particularly well-suited to exploring these two lines of research: firstly, the differ-
ential weighting of locations in transmission risk exposure; and secondly, the role of 
individual mobility in the spread of the virus.

 � Individual-based and spatially explicit models
A number of different approaches can be employed to model and characterise an object 
or domain of study. The choice of one or the other depends on the goals of the model, 
the extent of knowledge about the phenomenon in question, and the  availability of 
data to describe it.

Different types of modelling
The first type of model is based on the availability of quantitative data which is used to 
provide a summary or description: these are statistical models. Multinomial logistic 
regression models and spatial statistics such as spatio-temporal autocorrelation can 
be used to search for links between disease clusters, the socio-economic and environ-
mental characteristics of neighbourhoods, and types of land cover. Residual analysis 
of these models allows researchers to look for local explanations for these differences 
and to understand, for instance, why some neighbourhoods seem to be more exposed 
to the disease than others (Zellweger et al., 2017).
A second type of model is based on the characterisation of processes, particularly 
for the estimation of values that are unknown at the local level or for the prediction 
of system evolution. A gravity model can be used to calculate the flow of commuters 
between different towns. This is done by taking into account the mass of the towns 
in question (expressed by the volume of their populations) and the distance between 
them. This model can then be used to estimate the risk of a virus spreading within an 
urban system, or even between countries via international flights (Salami et al., 2020).
Finally, a third approach is based on behavioural models, i.e., the way that an entity 
functions or performs actions in their environment. A pattern of movement can thus 
describe the daily movement of an individual, which is constrained by the activities 
that they must perform. The simulation of thousands of these trips can then repro-
duce the collective mobility dynamics within a region combined with an interpersonal 
interaction mechanism in order to simulate virus transmission (Karl et al., 2014). 
A  multi-agent system model (Treuil et al., 2008) is particularly well-suited for this 
type of research question.

Use of multi-agent systems in epidemiology
Multi-agent systems (MAS) use so-called “individual-based” methods. They enable the 
execution of computer simulations which are then used as “artificial worlds” in order to 
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perform experiments under conditions similar to those found in a laboratory setting. 
In essence, the utilisation of these models enables the manipulation and alteration of 
parameters, as well as the replication of a series of experiments through simulation. 
Observing and measuring the evolution and change in the agent's state allows for an 
inference of what would happen in the real world under similar conditions.
MAS come from research in distributed artificial intelligence and robotics, whereby 
the agents of a MAS interact with one another and with their environment, typi-
cally according to cooperative, competitive and coexisting modes. This is done with 
the objective of resolving problems that are too complex for resolution by a single 
individual. By explicitly characterising the space, time, interactions, behaviours and 
levels of organisation, these methods represent a valuable contribution to geographic 
research, particularly in studies exploring phenomena which propagate through space. 
A detailed characterisation is proposed for the fundamental mechanisms involved in 
the dynamics of the phenomenon, which is then employed in a computer simulation 
to assess its validity.
In areas where the disease is endemic, our initial hypothesis is that urban environments 
are characterised by a limited number of locations that possess the requisite socio- 
economic conditions to sustain mosquito populations during inter-epidemic periods. 
This presence is sufficient to guarantee the local and continuous low- intensity circula-
tion of the viruses. During seasonal changes throughout the year, such as temperature 
rises and/or monsoons, vector populations explode, thereby increasing the overall risk 
of viral propagation. Our second hypothesis is that the socio-spatial organisation and 
discontinuities in urban environments, which structure daily mobility, are the source 
of pathogen propagation. From these initial focal points, the pathogens then spread 
throughout the urban area, leading to the occurrence of epidemics of varying sizes. It is 
therefore imperative to identify potential reservoirs of an infectious agent, understood 
here to be a set of hyper-localized sites linked to environmental and anthropogenic 
factors, in order to act efficiently against the spread of an epidemic.
However, the assessment of the epidemiological significance of these locations 
remains a challenge. In essence, the data collected by surveillance systems records the 
residence of the infected individual as the site of contamination, although this may 
not be the original source of contamination. In addition, not all cases are recorded. 
Epidemiological studies based on this data alone have a tendency to overestimate the 
local risk (contagion by proximity) in comparison to the overall risk (jump diffusion). 
In this context, modelling and targeted field research may elucidate the role of local 
microenvironments and human mobility in the dissemination of pathogens in urban 
settings. A major obstacle in modelling and data acquisition arises when attempting 
to consider the impact of urban environmental and socio-economic heterogeneity at 
high resolutions on epidemiological dynamics.

 �Application to dengue in Bangkok: MO3, methods and data
We developed a set of submodels for the MO3 simulator (Daudé et al., 2015). This 
enabled a simulation model to be designed, made of different components (Figure 9.1), 
which integrated biological knowledge of the vector and daily human mobility. 
The dynamics of these two submodels were linked to socio-environmental data at high 
resolution. The field of application of this model was Bangkok, Thailand.
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Figure 9.1. Primary components of the MO3 model.
MOMA: Model Of Mosquito Aedes. MOMOS: Model Of Mobility Simulation. MODE: Model Of Dynamical 
Environment.

The following sections present three models: one for the environment (MODE), 
one for the vector mosquito (MOMA), and one for the host (MOMOS). Addition-
ally, the transmission mechanisms of infectious agents between vectors and hosts 
are discussed. The last section of the chapter is dedicated to an MO3 simulation and 
methods to study this type of model.

Environmental modelling
Environmental dynamics are simulated by the model of dynamical environment, MODE 
(Misslin and Daudé, 2016). The agents of this model are cells which represent the 
specific portions of the territory to which the model is being applied. These cells are 
characterised by different environmental parameters which influence the behaviour of 
Ae. aegypti: classification of land cover (vegetation, water, type of built-up area, etc.), 
the number of potential larval habitats (receptacles which may contain fresh water), air 
temperature and precipitation. The data that enables these attributes to be quantified is 
derived from satellite image processing, weather station records and expert knowledge. 
Each agent of the environment (cell) also possesses functions which describe the change 
in the quantity of water available in potential egg-laying sites (filling and draining) and 
temperature fluctuations. These variations are calculated based on data obtained from 
MODIS thermal images (Aqua and Terra satellites). In the event of excessive cloud cover, 
it is possible that some pixels may return null values. In this scenario, MODE assigns a 
global temperature value to the specified area, which is derived from a weather station 
in Bangkok48. It is these same stations that provide rainfall data on a daily basis. The 
spatial resolution of an MO3 cell is 30 × 30 m, which corresponds to the resolution of 
Landsat 8 images (OLI). This resolution is compatible with the average range of dispersal 
of mosquitoes observed by mark–release– recapture studies (Sheppard et al., 1969).
MODE enables the generation of a substantial quantity of spatially explicit and dynamic 
data (Figure 9.2), which is used for behavioural models of mosquitoes and humans. 
Air  temperature values can then be calculated, thereby facilitating the  identification 

48. https://aqicn.org/city/thailand/bangkok/thai-meteorological-department-bangna/vn/wxqa.com 

https://aqicn.org/city/thailand/bangkok/thai-meteorological-department-bangna/vn/wxqa.com
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of large differentials across Bangkok (Figure 9.2a; see Chapter 3), a vegetation index 
(Figure 9.2b) and estimates of human population distribution (Figure 9.2c; see 
Chapter 4). The number of mosquito egg-laying sites is also estimated (Figure 9.2d). 
In light of the high cost of collecting data in the field, an approach based on know-
ledge of the terrain and expert assessments was deemed preferable in this case. Given 
the density of mosquito habitats in urban spaces is highly linked to the presence of 
humans and their activities (Ooi et al., 2006), an index was created for the abundance of 
 potential egg-laying sites based on the local density of households (Misslin et al., 2016).

Figure 9.2. Environmental factors constituting an ecological niche for the vector.
(a) Estimated air temperature. (b) Vegetation index. (c) Distribution of human population. (d) Distribution 
of potential larval habitats.

Some of this spatially explicit data is then input into the mosquito model (Misslin and 
Daudé, 2017).

Vector mosquito modelling
The model of mosquito aedes (MOMA) is a behavioural submodel for the MO3 
simulator. This model permits the simulation of vector populations in relation to 
 environmental characteristics (Maneerat and Daudé, 2016). Figure 9.3 shows the 
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general concept of the transition between the different states for Aedes (aquatic and 
aerial phases); Figure 9.4 shows the interactions between the adult female mosquito 
and the environment in the model.
For simulations at a city scale, aquatic development phases are described by stock 
models at a spatial resolution of 30 × 30 m, whereas the aerial phase is described by an 
individual-based model (Figure 9.3). Aedes females generally lay their eggs in containers 
where fresh water collects. Egg development begins once it comes into contact with 
water. This development phase lasts 2 to 3  days depending on water temperature. 
The  mosquito transitions to the larval stage upon hatching. Larvae are capable of 
moving in water to eat and breathe. At the end of 4 to 6 days, the larva transitions to 
the pupa stage. This development stage lasts between 2 and 7 days depending on the 
temperature. Up until this point in time, the development of the mosquito in MO3 has 
been entirely constrained by the presence of water in its habitat. This reproduces the 
strong link which exists between the increase in vector density and precipitation. Once 
the aquatic stage is complete, the mosquito progresses to its aerial stage. In this model, 
once the pupal stock has reached maturity, it triggers the creation of mosquito agents, 
with only the females being simulated. Blood meals provide the energy required for the 
completion of the oviposition phase (O). The females begin their gonotrophic cycle 
(Gn), during which they are prompted to bite mammals (essentially humans).

Figure 9.3. Diagram of state transitions for the Aedes agent life cycle according to its 
development stage (immature or aquatic, adult or aerial).
The arrows represent the possibilities of transitioning from one state to another.

MOMA is an individual-based model of Ae. aegypti adult female mosquitoes which 
are responsible for the transmission of viruses during blood meals. The activities 
which model mosquito behaviour are as follows (Figure 9.4): feeding, reproduction, 
resting, movement and survival. These activities are related to the needs of the species, 
which can be satisfied by the presence of blood and nectar sources for feeding, eggs-
laying containers for reproduction, shaded areas for resting and circulation areas for 
movement. As for survival, this essentially depends on temperature, humidity and a 
stochastic parameter which factors in the dangers to which the mosquito is exposed 
on a daily basis (in particular predation). Aedes therefore acts in accordance with its 
biological state, as defined by its internal variables, and in response to the resources 
present in its immediate environment.
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Figure 9.4. Modelling interactions between females mosquitoes and the environment.

Modelling hosts and their mobility
The model of mobility simulation (MOMOS) describes the host component, which 
essentially corresponds to human mobility behaviour (Cebeillac et al., 2017). A host 
agent is situated within the environment through which they move in order to 
complete their activities. The act of moving and changing location exposes humans 
to a range of risks (Figure 9.5). In the model, movements are made between different 

Figure 9.5. Representation of the activity space defined by Hägerstrand (1970) in the context of 
health. In this example, four people from the same household visit different places throughout 
the day. Each of these places is associated with a health risk according to the activity performed 
in this place and the time of day. As defined by Cebeillac and Daudé (2022).
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areas of activities (house, school, workplace, recreational activities, etc.) based on a 
mobility schedule created for each agent. The schedules are generated using data from 
a variety of sources, including social networks (Twitter and Facebook) and timesheets 
from surveys conducted (Cebeillac et al., 2018). Agents are generated using a 
synthetic population generator (see Chapter 4), with each agent being characterised 
by geographic attributes, such as a place of residence and schedule of daily activities. 
In the model, the activities performed by an individual, which determine the places 
visited, depend on their age, place of residence and epidemiological status (an agent 
presenting symptoms of dengue does not move).

Mechanisms of virus transmission
Mosquito agents (m) and host agents (h) are defined, according to their exposure to 
the virus (Figure 9.6), as susceptible (Sm, Sh), exposed (Em, Eh) and infected (Im, Ih) 
respectively. Only the host agent can be immunised (Rh), with the mosquito agent 
remaining infected, and therefore contagious (Im), until its death. The transmission of 
the virus from an infected host to a healthy mosquito, or from an infected mosquito to 
a healthy host, occurs when the mosquito takes a blood meal.
These different states may or may not change the behaviour of the agents. For example, 
it is feasible to restrict or even halt the mobility of the host agent in the event of 
contamination, in order to account for the appearance of incapacitating symptoms of 
varying degrees.

Figure 9.6. Transition diagram between different states for a mosquito agent (m) and host 
agent (h).
The host agent, in a susceptible state (Sh), may be infected by the dengue virus following a bite from an 
infected female mosquito (Im) with a risk of transmission (α). Once infected, the host develops the virus 
over a period of time (T1), which is referred to as the intrinsic period. Subsequently, the host enters the 
viraemia phase (T2), during which the virus may be transmitted to a healthy mosquito that has bites the host 
(Sm) with a probability (γ). Infected Aedes mosquitoes enter a period of extrinsic incubation (EIm) before 
becoming infectious (Im).

 �MO3 model simulations
MO3 simulations are multi-temporal, with one time step (iteration) per minute. The 
simulation time is therefore split into three scales depending on the processes: days, 
hours and minutes. Aquatic development of the mosquito and environmental varia-
bles are updated according to average daily temperatures, rainfall and evaporation. 
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The  mobility of human agents is simulated on an hourly basis, according to their 
schedule and the activities of adult mosquitoes according to temperature, daylight 
hours and the need for specific actions on a minute-by-minute basis. The recording of 
the various parameters during each iteration permits the reconstruction and analysis 
of the evolution of multiple dynamics. It is thus feasible to monitor the development 
of mosquito populations in their aquatic stages and calculate the density of adult 
mosquitoes at the resolution of the cell. Furthermore, it is possible to identify the 
various points of interaction between hosts and vectors and to calculate the environ-
mental profiles that are at risk at the time of these interactions, which in turn result in 
contamination loops. The simulation interface of the model permits the visualisation 
of the evolution of different indicators in the form of graphics and maps (Figure 9.7)

Figure 9.7. MO3 model simulation interface.

Mosquito life cycle dynamics
Over the course of a one-minute iteration, mosquito agents explore their environment 
and may select a target which responds to their needs and move towards it. If no target 
is identified, as none satisfy one of the expressed needs, the mosquito moves at random. 
If a target is selected, the mosquito moves in its direction. In the mechanism of move-
ment, the porosity coefficient of the environment plays a major role. For instance, it will 
limit the passage between one spatial object, such as a road, to another, such as a house 
(barrier effect). Conversely, it will facilitate the passage from a road to a green space 
(corridor effect) [Maneerat and Daudé, 2016]. To illustrate, we conducted a simulation 
of the population dynamics and dispersal of mosquitoes based on geographic config-
urations. The objective was to measure the effects of land use categories and human 
densities on the dispersal of mosquitoes from disparate emergence locations (Figure 9.8).
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Firstly, these simulations enabled us to ascertain whether the mean distances trav-
elled by virtual mosquito cohorts in urban areas align with the empirical data and 
 literature-based estimates. Secondly, we were able to establish relationships between 
these relatively low distances (several dozen metres to several hundred metres at most) 
and local land use configurations and human densities. Hence, the highly populated 
and densely built-up area of the urban slum (at the centre of Figure 9.8) showed low 
dispersal of mosquito cohorts, contrary to the more peripheral areas, which are less 
dense and characterised by rows of houses and gardens which the mosquitoes can 
cross, from one to another and depending on their needs, thus travelling over greater 
distances over the course of their life.

Figure 9.8. Movement patterns of agent mosquitoes in a neighbourhood of Delhi (India).
Each line of colour traces the path taken by the mosquito over the course of its life.

More than 50 parameters and variables are employed in the MO3 model, developed 
using the multi-paradigm programming language Scala49. This level of detail results in 
a particularly complex calibration and validation process. In essence, the number of 
potential combinations of parameters is so great that it is almost impossible to system-
atically explore all of their domains. In this example, the validation of the mosquito 
model was performed in accordance with two criteria: expert knowledge and survey 
data (Maneerat and Daudé, 2017). Research is ongoing to study the behaviours of this 
model, and to calibrate and explore different vector control scenarios.

Exploration of model behaviours
The calibration data employed is derived from vector surveillance and epidemiological 
data. One set of data is used to calibrate and validate the mosquito model, while the 
other is employed to test the hypothesis of the role of human mobility in the spread of 
the disease at a city scale. The reconstruction of a virtual world based on a specified 

49. https://www.scala-lang.org/

https://www.scala-lang.org/
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number of proxies from the real world and stylised facts produces results that must 
still be evaluated in order to ascertain their suitability for application in real-world 
scenarios. A model, in and of itself, is not capable of capturing the full complexity of 
the phenomena that occur in the real world. It is essential to validate the processes 
at both micro- and macro-scales in order to guarantee the consistency and robust-
ness of the results produced by this simulation data. The generation of this data is 
not intended to provide definitive answers to all questions; rather, it is a means of 
addressing a specific set of questions concerning the selected mechanisms and param-
eters. MO3 submodels use a multitude of interacting mechanisms and parameters, 
which generate an extensive range and volume of behaviours and data, rendering them 
infeasible to evaluate without the use of more targeted methods.
In order to cope with the vast number of possible combinations—for models potentially 
running for several minutes or even hours—it is necessary to employ exploration algo-
rithms (evolutionary algorithms) and the OpenMOLE platform (Reuillon et al., 2013) 
capable of exploiting the parallelism offered by HPC (High Performance Computing) 
environments. MO3 can benefit from the European grid computing infrastructure 
(4,000 cores) and the high-performance computing power of CRIANN, the computing 
mesocentre for Normandy (10,000 cores). These resources can be employed for weeks 
at a time to run simulations and evaluate the consistency of the results obtained for 
these questions.

 �Conclusion
MO3 is a simulator based on behavioural models at high spatial and temporal resolu-
tions. It describes a complex pathogen system to study the environmental and anthropic 
factors in the spread of dengue. MO3 is currently in the development phase and has 
been used throughout the project of the same name50 to direct data collection and field 
experiments. Upon completion, it may be utilised to ascertain the most effective vector 
control strategies for an in situ evaluation based on optimisation algorithms.
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Mosquito-borne diseases, such as malaria, continue to represent a significant chal-
lenge for healthcare systems and development in many tropical countries, particularly 
in Sub-Saharan Africa. Additionally, in recent decades, a multitude of mosquito-borne 
diseases, including dengue, chikungunya, Zika, West Nile fever and Rift Valley fever, 
have emerged or re-emerged globally, gaining new ground and causing harm to 
both animal and human health. The persistence or emergence of these vector-borne 
diseases (VBDs) depends on numerous climatic, environmental and demographic 
factors specific to each region. These factors influence the way these diseases operate 
at varying levels. For two decades now, geomatics has been used to better understand 
the epidemiological processes of vector-borne diseases and to better predict their 
evolution in a world undergoing profound change.
This book presents a distinctive and contemporary overview of the potential applica-
tions of remote sensing and spatial modelling in the enhanced monitoring and control 
of infectious diseases whose pathogens are transmitted by mosquitoes. The presence, 
abundance and behaviour of vector mosquitoes, and by extension the epidemiology 
of the diseases they transmit, are complex phenomena which depend on a range 
of geographic, climatic and environmental factors. These include factors related to 
human demographics and activities, which shape the local expression of these diseases 
in space and time.
The combination of remote sensing and Geographic Information System (GIS)-based 
techniques with different modelling approaches offers significant advantages in the 
study of VBDs:

 – mapping the distribution of larval habitats and adult mosquito population densities; 
 – evaluating the risk of vector exposure at different scales, for diseases already present 

or those that could be introduced;
 – determining locations and seasons at high risk of transmission (hot spots) in order 

to optimise surveillance and control;
 – determining the environmental, demographic and sociocultural factors which lead 

to a higher risk of infection for certain communities in order to implement preventive 
measures;
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 – taking into account anthropogenic changes and the environmental modifications 
that follow, in particular transformations of agricultural land and vegetation cover, 
urban sprawl, and industrialisation in order to predict short- and medium-term 
 changes in the risk of exposure to vectors;

 – assess the effectiveness and help optimise the various vector control methods, 
implemented singly or in combination, as part of an integrated control strategy.

Information derived from satellite data can facilitate a more comprehensive under-
standing of the risk of exposure to vectors, as discussed in Part one. This data is 
readily accessible to researchers and health service managers at a reduced cost. 
This information is integrated with other climatic, entomological, demographic and 
epidemio logical data in GIS platforms, enabling the complex processes of vector-
borne diseases to be understood. This approach enables all relevant determinants 
and their spatial dimensions to be taken into account.

The diverse modelling methodologies outlined in Part  2 are subsequently used to 
improve understanding of the mechanisms underlying VBD dynamics within a specific 
context. This facilitates more accurate forecasting of the disease's spatial and temporal 
evolution, incorporating considerations of vector control measures with environ-
mental and climate alterations. The choice of approach is contingent upon the specific 
objectives, knowledge base, and information available for a given vector and VBD. 
Part  2 presents these diverse but often complementary approaches (species distri-
bution models, knowledge-based models, mechanistic models, behavioural models) 
used to study a range of VBDs (Anopheles/malaria, Aedes/dengue models) in different 
contexts (French Guiana, Madagascar, La Réunion, Thailand) which enable useful 
operational tools to be developed for decision-makers and health service managers in 
order to optimise entomological surveillance and vector control.

In the context of an island territory such as La Réunion, which is subject to a range of 
vector exposure risks, recent successes demonstrate the potential of these modelling 
approaches to serve as a toolbox for achieving a desired goal. The spatial and seasonal 
characterisation of the risk related to flea-borne typhus, bluetongue and epizootic 
haemorrhagic disease51 enables the implementation of targeted awareness campaigns 
for health professionals and livestock farmers (Grimaud et al., 2021, 2019; Tran et al., 
2021). Predictive mapping tools for vector densities and the risk of dengue transmis-
sion are fitting in the context and have been used for several years by the agency in 
charge of vector control (ARS La Réunion) in order to optimise entomological surveil-
lance and preventive and control measures (Tran et al., 2020). Modelling tools have 
been developed and made available to evaluate and optimise vector control methods, 
either alone or in combination as part of an integrated control strategy (Douchet 
et al., 2021). The aforementioned successes in La Réunion have been facilitated by 
the accessibility and depth of expert knowledge, as well as the availability of exper-
imental and observational data. Furthermore, the proximity of researchers from a 
multitude of disciplines, working in close collaboration with the beneficiaries of this 
research, has proved invaluable. Such examples include the ARS La Réunion as part of 

51. Bluetongue disease and epizootic haemorrhagic disease are two viral animal diseases which regularly 
afflict Reunion island. These are known locally as “bavites” (derived from the French baver, meaning to drool, 
due to the excessive salivation they cause) and are responsible for major economic losses in the region.
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the One Health Network – Indian Ocean52, a Platform in partnership for research and 
training (Dispositif de recherche et d’enseignement en Partenariat). The flexibility and 
adaptability of these approaches also permit their application to other contexts that 
are less well documented, as evidenced by the work performed on the neighbouring 
island of Madagascar cited in this publication (Rakotoarison et al., 2020).
As we have seen in the example of Reunion island, the convergence of factors 
such as the availability of multi-temporal satellite data and entomolo gical and 
epidemiological data, collaboration between remote sensing experts, modellers 
and biologists, and the availability of appropriate statistical systems and image 
processing algorithms creates a fertile research environment. The combination of 
upstream beneficiaries of research projects and a genuine commitment to transfer 
the results of these projects through the joint development of operational manage-
ment tools promote their uptake and effective use in surveillance and vector control 
programmes. These remote sensing and spatial modelling approaches are rela-
tively generic and can be applied to multiple areas, whether these are vector-borne 
zoonotic diseases (Rift Valley fever, West Nile fever, flea-borne typhus), human 
diseases (malaria, dengue) or animal diseases (bluetongue, epizootic haemorrhagic 
disease), and naturally combine environmental and human sciences. These are the 
pillars of the “One Health”53  initiative, which include interdisciplinary and intersec-
toral collaboration.
The application of geospatial technologies to the field of VBDs has seen rapid growth 
in recent decades. As shown in this publication, a wide range of powerful image 
processing software, GIS, statistical tools and modelling approaches is now avail-
able in an accessible office environment, allowing epidemiologists and biologists to 
experiment with new spatial analysis techniques. Although the studies discussed in 
this document demonstrate the effectiveness of remote sensing and other geospatial 
technologies for VBD control and surveillance, several aspects must be considered in 
order to see more widespread adoption of these technologies in public health services, 
particularly in the Global South. Among others, these include the availability of 
resources for the collection, processing and modelling of geospatial data, staff training 
in the acquisition and correct interpretation of results, the cost-efficiency of these 
surveillance techniques, and the continuous and timely availability of remote sensing 
data. It should also be highlighted that assigning resources to these new technolo-
gies should not be to the detriment of other core disease prevention and management 
activities at the community level.
In order to enhance the capabilities of geospatial technologies applied to the field 
of VBDs and form interdisciplinary and intersectoral partnerships, the importance 
of training must be emphasised: postgraduate training (masters, PhDs) for students 
will help to achieve a critical mass of skills in this field, particularly in countries of the 
Global South. The incorporation of specific modules on how to use these approaches 
in the basic training of future stakeholders/decision-makers and the organisation of 
professional training courses will enable advances in research on Earth observation 

52. https://www.onehealth-oi.org/
53. The One Health initiative is supported by the WHO, the World Organisation for Animal Health 
(WOAH), the United Nations Food and Agriculture Organization (FAO) and the United Nations Environ-
ment Programme (UNEP).

https://www.onehealth-oi.org/
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data and models to be shared amongst the fields of human health, animal health and 
ecology, by highlighting their potential and limitations. The recent growth of online 
training courses is increasing the uptake of remote sensing and modelling products 
and methods.
There are a number of opportunities for using spatial information, in particular Earth 
observation images, to better understand, predict and prevent the transmission of 
VBDs. Firstly, despite the exponential growth in the application of remote sensing and 
spatial modelling techniques, these have yet to be applied to many VBDs in a signifi-
cant number of regions. The accuracy of predictive maps for these diseases must also 
be verified in the field: there will always be a need for specialists in entomology and 
epidemiology. In addition to biological approaches, social and behavioural patterns, 
such as the time spent outdoors by individuals, which increases the risk of exposure to 
anthropophilic vectors, the types of house construction, the use of mosquito nets and 
repellents, as well as the availability of basic sanitation facilities and primary health 
care, which are related to socio-economic conditions, are important for the preven-
tion and control of vector-borne diseases. The characteristics of these diseases have 
been directly linked to poverty and social inequality. These socio-anthropological and 
entomological factors cannot be deduced from remote sensing techniques alone.
One interesting line of research opened up by modelling is the possibility of testing 
future change scenarios and studying their potential impact on health risks. For 
example, the impact of climate change on the distribution and abundance of vector 
populations, as well as pathogen transmission risk, can be studied via modelling 
(Guis et al., 2012; Kraemer et al., 2019). Most of the models presented in Part 2 
integrate temperature and precipitation variables. Scenario-based projections of 
these variables (temperature increases, changes in rainfall patterns) produced by the 
 Intergovernmental Panel on Climate Change (IPCC) can be used as inputs for these 
models to simulate their effects in silico. Furthermore, the impact of vector control 
measures can also be tested by models (Douchet et al., 2021; Haramboure et al., 2020) 
and discussed with vector control stakeholders to optimise their efforts, particularly 
as part of the implementation of integrated control strategies. Indeed, this is one of 
the main features requested of the Arbocarto tool by vector control agencies in France 
(see Chapter 8). Lastly, other types of scenarios can be tested, such as the impact of 
demographic changes (population growth, human mobility), as well as environmental 
changes. In the latter example, the benefit of modelling is to provide decision-makers 
with a map-based visualisation of the impact of planning and mitigation measures, 
which can help in the decision-making process by integrating public health issues, in 
particular the prevention of epidemics.
Finally, although the spatial data and methods presented in this publication focus on 
mosquito-borne diseases, the approaches discussed (data extraction from satellite 
imagery, modelling of species distribution, population dynamics and mobility) are 
generic in nature. They can therefore be adapted to other questions and challenges, 
such as biodiversity (and studying their links to health), as well as food security chal-
lenges (with common questions related to plant disease epidemiology, as well as the 
distribution and dynamics of crop pests). These questions are part of the “One Health” 
approach, which, in addition to addressing human and animal health, must also 
 integrate plant and ecosystem health.
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Pathogen: an agent (virus, bacteria, protozoa, nematode, etc.) capable of causing injury or 
disease in animals (including humans) or plants.

Arbovirus: contraction of the term arthropod-borne virus, a virus transmitted by arthropods. 
Arbovirosis is a disease caused by an arbovirus.

Arthropod: group of animals with a segmented body and covered by an exoskeleton, such as 
ticks and mosquitoes.

Spatio-temporal autocorrelation: statistical measurement which answers the following 
 question: do nearby spatial entities change over time in the same way as entities which are 
further away?

Bias: The statistical bias of an estimator is the difference between this estimator’s expected 
value and the true value of the parameter being estimated. The term “bias” also encompasses 
the set of procedures and approaches which lead to statistical bias, i.e., the errors in the results 
of an analysis or model.

Biotope: ecological space of varying size which provides viable conditions, which are generally 
fairly homogeneous and constant, to all of the living organisms coexisting in this space.

Index case: in epidemiology, this term refers to the first person of an epidemic (or epidemio-
logical cluster) to be infected by a pathogen.

Cluster (aggregate): group of objects linked in space and time. In epidemiology, a disease 
cluster refers to a health event connecting individuals.

Vector competence: quantitative estimate of a vector’s ability to transmit a pathogen under 
natural conditions.

Diapause: an organism’s physiological state of rest, determined genetically, which decreases 
metabolic rate. Often occurring on a seasonal basis, this state can be induced by photoperiod 
(Duvallet et al., 2017, see references in Chapter 1).

Dormancy: period of minimal activity without growth or development, minimising risks 
related to unfavourable environmental conditions and determined by the environment itself 
(Duvallet et al., 2017, see references in Chapter 1).

Expected value: the expected value of a random variable is a numerical value representing 
the average outcome of a random experience. This is equivalent in probability to the mean of a 
statistical series in statistics.

Aestivation: period during which certain arthropods reduce their metabolism and draw from 
fat reserves due to unfavourable environmental conditions (temperature, humidity). Depending 
on the season in question, this may also refer to hibernation.

Eurygamous: refers to a species where mating occurs during flight over a large area; breeding 
in a cage is therefore difficult, or even impossible. Conversely, stenogamous refers to a species 
where mating takes places in a confined area.
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Larval habitat: area in which the aquatic stages of mosquitoes develop and also associated with 
the egg-laying sites chosen by females. Larval habitats vary greatly depending on the species and 
their ecological needs during the aquatic stages: fresh or brackish water, exposed to sunlight or 
sheltered, permanent or temporary, containing plant matter or clear water, etc.

Gravity model: in geography, models of spatial interactions which aim to describe the rela-
tionships between places. Gravity models enables the strength of these relationships to be 
characterised between geographic cells by considering both their potential (population, 
resources, etc.) and their distance.

Nulliparous: refers to a female which has never laid eggs, opposite of “parous”.

Oviposition: (from the Latin ovum, meaning egg), act of laying eggs at a site chosen by a gravid 
female (related to larval ecology), which allows them to develop within the environment.

Extrinsic incubation period: time required for the development of the ingested virus in order 
to render the vector infectious when taking its next blood meal.

Raster: a raster is a grid, also referred to as a matrix, organised into columns and rows. Each cell 
of this grid is a single pixel with assigned values. The distribution of all of these pixels in the grid 
(row i, column j) creates an image (generally in “.tif ” format).

Residuals: In a statistical model, the residuals correspond to the observational data that is 
not explained by the model. In a regression model, the residuals correspond to the difference 
between the values predicted by the model and those observed.

Vector (biology): refers to an organism which transmits an infectious agent. In particular, these 
may include a haematophagous arthropod responsible for the active biological (or mechanical) 
transmission of a pathogen from one vertebrate to another.

Vecteur (geomatics): Vector data is used to represent real-world features in a GIS A vector 
feature can be defined according to its geometry type, which may be a point, line or polygon. 
Each vector feature is accompanied by a set of attribute data that describes it. Feature geometry 
is described in terms of vertices57.

57. https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/vector_data.html#what-have-we-learned

https://docs.qgis.org/3.34/en/docs/gentle_gis_introduction/vector_data.html#what-have-we-learned


141

List of acronyms

AES Entomological surveillance area
AHP Analytic Hierarchy Process
ARS Agence régionale de santé (French regional health agency)
ASF African swine fever
BI  Brightness index
CIRAD Centre de coopération internationale en recherche agronomique pour le développement 

 (French agricultural research and international cooperation organisation)
CNES Centre national d’études spatiales (French national space agency)
CR  Consistency ratio
DDT Dichlorodiphenyltrichloroethane (insecticide)
DEM Digital elevation model 
DGS Direction générale de la santé (Directorate-general of health)
DLR Deutsches Zentrum für Luft- und Raumfahrt (German national space agency) 
ECOSTRESS Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station
EID Entente interdépartementale pour la démoustication (Interdepartmental agreement 

 for mosquito control)
ESA European Spatial Agency
ESRI Environmental Systems Research Institute
ETM+ Enhanced Thematic Mapper Plus
EVI Enhanced Vegetation Index
FAO Food and Agriculture Organization
FFT Fast Fourier Transform
FOTO Fourier-based Textural Ordination
GBIF Global Biodiversity Information Facility
GHSL Global Human Settlement Layer
GIS Geographic information system
GIS-MCA Geographic Information System-based multi-criteria analysis
GLCM Grey Level Co-occurrence Matrix
GLM Generalized linear model
GPM Global Precipitation Measurement
GSMaP Global Satellite Mapping of Precipitation
HMIS Health management information system
HPC High Performance Computing
HR  High (spatial) resolution
IGN Institut national de l’information géographique et forestière  

 (French National Geographic Institute)
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IMERG Integrated Multi-satellite Retrievals for GPM
INRAE Institut national de recherche pour l’agriculture, l’alimentation et l’environnement 

 (French National Research Institute for Agriculture, Food and Environment)
INSEE Institut national de la statistique et des études économiques  

 (French National Institute of Statistics and Economic Studies)
IPCC Intergovernmental Panel on Climate Change
IPF Iterative Proportional Fitting
IPM Institut Pasteur de Madagascar (Pasteur Institute of Madagascar)
IRD Institut de recherche pour le développement (French National Research Institute  

 for Sustainable Development)
IRIS Îlots regroupés pour l’information statistique (fundamental unit for dissemination  

 of infra-municipal data used in France)
IRS  Indoor residual spraying
JRC Joint Research Center
JRE  Java Runtime Environment
LMI Laboratoire mixte international (International Joint Laboratory of the IRD)
LST Land Surface Temperature
MAE Mean Absolute Error
MAS Multi-agent system
MCA Multi-criteria analysis
MCH Malagasy Central Highlands
MIR Mid-infrared
MNDWI Modified Normalized Difference Water Index
MODIS Moderate-Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NDBI Normalized Difference Built-up Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near-infrared
NMCP National malaria control programme
ODE Ordinary differential equations
OLI Operational Land Imager
OSM OpenStreetMap
PCA Principal component analysis
PEPS Plateforme d’exploitation des produits Sentinel  

 (Sentinel products exploitation platform)
RGB Red, green, blue
SAVI Soil Adjusted Vegetation Index
SCO Space Climate Observatory
SEAS-OI Satellite-Assisted Environmental Monitoring of the Indian Ocean  

 (Research centre for data-reception and remote-sensing centre of expertise)
SEC Scientific Expertise Centre (of the Theia hub)
SIT  Sterile insect technique
SRTM Shuttle Radar Topography Mission
SVM Support Vector Machine
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SWIR Short Wave Infrared
TIRS Thermal Infrared Sensor
TRMM Tropical Rainfall Measuring Mission
TVX Temperature-Vegetation Index
UMR Unité mixte de recherche (Joint research unit)
UNEP United Nations Environment Programme
USGS United States Geological Survey
VBD Vector-borne disease
VC  Vector control
VHSR Very high (spatial) resolution
WHO World Health Organization
WHO World Health Organization
WMS Web Map Service
WNF West Nile fever
WNV West Nile virus
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Mosquitoes are vectors of many disease-causing pathogens, including malaria, 
dengue, chikungunya, and yellow fever. According to the World Health Organization, 
these vector-borne diseases account for several hundred thousand deaths 
annually. They also cause zoonoses, such as Rift Valley fever and West Nile fever.

In this context, the development of operational tools to support surveillance and 
control strategies is essential—not only in countries of the Global South, where 
mosquito-borne diseases are most prevalent in tropical and subtropical regions, 
but also in the countries of the North, where the establishment of invasive species 
such as the tiger mosquito is increasing the risk of disease emergence. To address 
these challenges, Earth observation imagery offers valuable potential: the spatial 
distribution and seasonal dynamics of mosquito populations are closely linked to 
climatic factors (such as temperatures, rainfall and humidity) and environmental 
variables (such as the presence of water bodies and vegetation), many of which can 
be monitored through satellite data.

Numerous recent studies have led to the development of innovative methods that 
combine remote sensing with spatial modelling to predict the spatial and temporal 
dynamics of vector mosquitoes and associated diseases. Moving beyond proof-
of-concept, some of these approaches have given rise to operational tools and 
processing chains that are now actively used by public health authorities and vector 
control agencies.

This book, intended for students, researchers, and public health professionals, 
offers a synthesis of current research and operational tools in the field.
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